### Energy Management – Assessing the organisation's preparedness

R Harikumar Energy Management Centre - Kerala

### **Objectives**

To assess the preparedness of the organization to implement energy management strategies

To develop a strategic, phased approach

To develop management tools that ensure success

### Why doesn't it happen?

Some organizations have saved 20 to 40% of their energy costs through management—why doesn't it happen everywhere?

- It's not my job to save energy.
- I'm too busy to do anything.
- It's always available when I need it.
- I don't have to pay the bills.
- Hop Management doesn't care. Why should I?

### **Assessing the organization**

|   | Energy                  | Organizing             | Skills                   | Information             | Marketing &            | Investment               |
|---|-------------------------|------------------------|--------------------------|-------------------------|------------------------|--------------------------|
|   | Policy                  |                        | & Knowledge              | Systems                 | Communicating          |                          |
|   | Energy policy, action   | Energy management      | All energy users         | Comprehensive system    | Communicating the      | Positive discrimination  |
|   | plan and regular review | fully integrated into  | receive specific energy  | sets targets, monitors  | value of energy        | in favour of green       |
| ł | have commitment of      | management structure.  | training integrated into | consumption, identifies | efficiency and the     | schemes with detailed    |
| ł | top management as       | Clear delegation of    | other development        | faults, quantifies      | performance of energy  | appraisal of all new-    |
| 4 | part of a business &    | responsibility for     | activities. Workshops    | savings and provides    | management within the  | build & refurbishment    |
|   | environmental strategy  | energy consumption.    | facilitate a sharing of  | budget tracking.        | organization and       | opportunities.           |
|   |                         |                        | knowledge.               |                         | outside.               |                          |
|   |                         |                        |                          |                         |                        |                          |
|   | Formal energy policy    | Energy manager         | Key energy users         | Monitoring and          | Programme of staff     | Same payback criteria    |
|   | but no active           | accountable to energy  | receive regular and      | targeting reports for   | awareness and regular  | employed as for all      |
|   | commitment from top     | committee representing | specific training. Brief | individual areas based  | publicity campaigns.   | other investments.       |
| 3 | management.             | all users,             | awareness training       | on sub-metering, but    |                        |                          |
|   |                         |                        | provided to all energy   | savings not effectively |                        |                          |
|   |                         | _                      | users.                   | reported to user.       | _                      |                          |
|   |                         |                        |                          |                         |                        |                          |
|   | Unadopted energy        | Energy manager in      | Key energy users         | Monitoring and          | Some ad-hoc staff      | Investment using short   |
|   | policy set by senior    | post, reporting to ad- | receive awareness        | targeting reports based | awareness training.    | term pay back criteria   |
| 2 | manager or senior       | hoc committee but line | training, also           | on supply meter data.   |                        | only.                    |
| 2 | departmental manager.   | management and         | occasional system-       | Energy unit has ad-hoc  |                        |                          |
|   |                         | authority unclear.     | specific training.       | involvement in budget   |                        |                          |
|   |                         |                        |                          | setting.                |                        |                          |
|   |                         |                        |                          |                         | <u> </u>               |                          |
|   | An unwritten set of     | Energy management      | Key employees            | Cost reporting based    | Informal contacts used | Only low cost            |
|   | guidelines.             | the part-time          | participate occasionally | on invoice data.        | to promote energy      | measures taken.          |
|   |                         | responsibility of      | in awareness training.   | Engineer compiles       | епісіелсу.             |                          |
|   |                         | limited outbority or   | Some miormation          | within technical        |                        |                          |
| 1 |                         | influence              | passed informally to     | department              |                        |                          |
| 1 |                         | innuence.              | energy users.            | department.             |                        |                          |
|   |                         |                        |                          |                         |                        | <u> </u>                 |
|   | No explicit policy.     | No energy              | Energy users rely on     | No information          | No promotion of        | No investment in         |
|   |                         | management or any      | their existing           | systems. No             | energy efficiency.     | increasing energy        |
| 0 |                         | formal delegation of   | knowledge.               | accounting for energy   |                        | efficiency in the plant. |
| 0 |                         | responsibility for     | 1                        | consumption.            |                        |                          |
| 1 | _                       | energy use.            |                          |                         |                        |                          |
|   |                         |                        |                          |                         |                        |                          |

#### The Energy Management Matrix

### **A Balanced Profile**

|   | Energy<br>Policy | Organizing | Skills &<br>Knowledge | Information<br>Systems | Marketing & Communicating | Investing |
|---|------------------|------------|-----------------------|------------------------|---------------------------|-----------|
| 4 |                  |            |                       |                        |                           |           |
| 3 |                  |            |                       |                        |                           |           |
| 2 |                  |            |                       |                        |                           |           |
| 1 |                  |            |                       |                        |                           |           |
| 0 |                  |            |                       |                        |                           |           |

### **An Unbalanced Profile**

|   | Energy<br>Policy | Organizing | Skills &<br>Knowledge | Information<br>Systems | Marketing & Communicating | Investing |
|---|------------------|------------|-----------------------|------------------------|---------------------------|-----------|
| 4 |                  |            |                       | $\land$                |                           |           |
| 3 |                  |            |                       |                        |                           |           |
| 2 |                  |            |                       |                        |                           |           |
| 1 |                  |            |                       |                        |                           |           |
| 0 |                  |            |                       |                        |                           |           |

### **Interpreting the Profile**



**Strive** for balance **#**Concentrate on raising the lowest scores Hove all factors upwards

### **A Strategic Approach**



### **Gaining Control**



Time

### Investing



Time

### **Maintaining Control**



Time

### **Organizational Change**



#### Senior Managers may care about

- ➡the organization's survival
- its efficiency or profitability
- their own professional development.

Hore than energy conservation itself

### **Organizational Change**

Who's Responsible?

energy managers or co-ordinators

Ine managers responsible for the overall efficiency of their departments ₩What are their concerns?

Monitoring consumption

identifying and correcting faults

Motivating staff

identifying and implementing energy saving measures

### **Energy Policy**

#### % Purpose

a public expression of your organization's commitment to energy management

 A working document to guide your energy management practices and to provide continuity

### **Energy Policy**

Why Bother? ∺To protect against:

- changes in personnel
- alterations in perceived priorities.

#### **Other Benefits:**

- % clear statement of what you
  are being asked to accomplish
- # measure performance against an agreed programme and set of targets
- **#** adequate staffing and funding
- % formal backing from top
  management.

### Sample Energy Policy Contents

#### Part 1

- Declaration of commitment to energy management
- **#** Statement of policy
- Statement of objectives, separated into short and longer term goals

#### Part 2

- Action plan
- **#** Resource requirements,
- Responsibility and accountability
- Energy management committee
- **#** Review procedure

### **Developing a Policy**

#### %Consult

Implant operations, finance, purchasing, human resources, marketing and sales, corporate communications and information services, etc.

<mark>∺</mark>Draft

Ratify

## Organizing

- responsibility concentrated or distributed?
- energy management is a management function
- all managers are responsible
- accountability should be distributed to those who control it.



### **Energy Manager Functions**

- energy policy
- management information
- % reporting
- policies and practices for the purchase and combustion of fuels
- 🔀 energy awareness
- Good housekeeping' and plant operating practices

- ₭ training needs
- % energy efficiency
  opportunities
  identification
- investment programme
- % review procedures for return on investment

### Motivating

answer the question "what's in it for me?"

- build commitment to achieving the corporate goal
- demonstrate the importance of energy efficiency
- involve people in the process
- provide a means for feedback
- communicate effectively
- accomplish "attitude adjustment"

### How to Motivate

Factors financial rewards job security job enrichment peer pressure public recognition increased responsibility and greater autonomy.

### Strategies

- ensure that people get something out of what you propose
- give rewards and/or recognition
- link energy savings to the individual's own best interests

### **Information Systems**

What is Information? # data that has been processed so that it is meaningful to users and helps them make decisions



### **Designing the Information System - Some Questions**

who has an interest in the information it produces?

what are they interested in knowing?

are they getting the right information in the form that is most useful?

### **Barriers to Overcome**

#### Managerial

- energy management marginalized as a technical specialty
- line management is inadequate
- insufficient interest and driving force from above
- little incentive to save energy

#### Technical

- getting accurate data on time is a key problem
- monitoring and targeting is not integrated with financial accounting
- output is not reported to either users or senior managers in a form they can readily understand and use.

### **Strategies for Success**

decide who will use the information and involve them in assessing their needs

- keep data input and analysis as simple as possible
- ensure that the output motivates people to use energy efficiently

justify the expense of running the system to senior management.

**#**Top Level and Senior Managers

- financial impact of energy management
- future investment to meet payback expectations in the short term

what major energy efficiency projects with longer payback should be financed and why?

#### ∺Middle Managers

# is the department meeting its target and/or staying within budget?

#### ₭ Key Personnel

- how much has energy consumption changed compared with last year?
- what has been the effect of any energy management action taken?
- what is the trend in energy use?

#### ∺General Staff

is department consumption of energy improving or getting worse?

what impacts are their actions having on energy use?

**#**Energy and Department Managers

- by how much is their department improving?
- how much effect has their good housekeeping had?
- what measures would bring about increased energy efficiency?
- what is the anticipated payback on these measures?
- what technical advances in energy management are on the horizon?

### Marketing and Communicating

#### **Communicate to:**

- raise awareness of the importance of energy efficiency to cost control and environmental conservation
- Promote energy efficiency measures
- Publicize your achievements in energy management inside and outside the organization.

### **Making the financial Case**

the size of the energy problem

- the technical and good housekeeping measures to reduce waste
- the predicted return on any investment
- the real returns achieved on particular measures over time.

### **Benefits of Measures**

Financial:

- energy savings
- water savings
- maintenance savings
- increased productivity

improved product quality Non-financial:

- improved workplace environment
- mitigation of external environmental impact.

### **Setting Priorities**

#### Consider:

- energy consumption per unit of production of a plant or process
- current state of repair and energy efficiency of the building fabric, plant and services, including controls
- quality of the indoor environment
- residual life or tenancy of the building
- effect on staff attitudes and behaviour.

### Costs

direct project costs

new maintenance costs

- cost of operational adjustments (additional staffing, different production rates, etc.)
- training of personnel on new technology or operations

### **Selling Investment**

reducing operating/production costs
increasing employee comfort and well-being
improving cost-effectiveness and/or profits
protecting under-funded core activities
enhancing the quality of service or customer care delivered

protecting the environment.

### **Investment Appraisal**

to determine which investments make the best use of available money

- to ensure optimum benefits from any investment made
- to minimise the risk from making investments
- to provide a basis for subsequent analysis of the performance of the investment.

### **A "Level Playing Field"**



Energy management investments should be assessed by the same criteria as investments in other priorities

### **Financial Analysis Methods**

Simple Payback Period

 $SPP(years) = \frac{CapitalCost}{AnnualSavings}$ 

Return on Investment

$$ROI = \frac{Annual Net Cash Flow}{Capital Cost} \times 100\%$$

Net Present Value
 Internal Rate of Return.

### **Cash Flow Analysis**



### **Cash Flow Table**

| Tak                                       | ole C4.1: Ca                          | ash Flow 1                     | able for Pur                       | chase of ne                         | w Boiler                            |                              |
|-------------------------------------------|---------------------------------------|--------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------|
| Capital Expenditure                       | e Rs.3,000,00                         | 0 9                            | 0% on delivery                     | /commissioni                        | ng, and 10%                         |                              |
|                                           |                                       | р                              | erformance gu                      | arantee due a                       | at one year                         |                              |
| Expected Savings                          | Rs. 1,440,00                          | 00/year ⊢                      | alf in first year.                 | full amount i                       | <u>n all remainin</u>               | g years                      |
| (Values in Rs'000)                        |                                       |                                | -                                  |                                     |                                     |                              |
|                                           |                                       |                                |                                    |                                     |                                     |                              |
| Year                                      | 0                                     | 1                              | 2                                  | 3                                   | 4                                   | 5                            |
| Year<br>Costs                             | <b>0</b><br>(2700.0)                  | <b>1</b><br>(300.0)            | <b>2</b>                           | <b>3</b>                            | <b>4</b> 0                          | <b>5</b> 0                   |
| Year<br>Costs<br>Savings                  | <b>0</b><br>(2700.0)<br>0             | <b>1</b><br>(300.0)<br>720.0   | <b>2</b><br>0 0<br>1,440.0         | <b>3</b><br>0<br>1,440.0            | <b>4</b><br>0<br>1,440.0            | 5<br>0<br>1,440.0            |
| Year<br>Costs<br>Savings<br>Net cash flow | <b>0</b><br>(2700.0)<br>0<br>(2700.0) | 1<br>(300.0)<br>720.0<br>420.0 | 2<br>0 0<br>0 1,440.0<br>0 1,440.0 | <b>3</b><br>0<br>1,440.0<br>1,440.0 | <b>4</b><br>0<br>1,440.0<br>1,440.0 | 5<br>0<br>1,440.0<br>1,440.0 |

### **Net Present Value Calculation**

| Table C4.3: NPV Calculation                              |                                |             |               |                     |           |        |  |
|----------------------------------------------------------|--------------------------------|-------------|---------------|---------------------|-----------|--------|--|
| Year                                                     | 0                              | 1           | 2             | 3                   | 4         | 5      |  |
| Net cash flow (Rs000s)                                   | (2700.0)                       | 420.0       | 1440.0        | 1440.0              | 1440.0    | 1440.0 |  |
| The discounted cash flow at 10% can be found as follows: |                                |             |               |                     |           |        |  |
| Y                                                        | Year 0 1 x (2700.0) = (2700.0) |             |               |                     |           |        |  |
| Y                                                        | Year 1 0.909 x 420.0 = 381.78  |             |               |                     |           |        |  |
| Year 2 0.826 x 1440.0 = 1189.44                          |                                |             |               |                     |           |        |  |
| Year 3 0.751 x 1440.0 = 1081.44                          |                                |             |               |                     |           |        |  |
| Y                                                        | ear 4                          | 0.683 x 144 | 0.0 = 983.    | 52                  |           |        |  |
| Y                                                        | ear 5                          | 0.620 x 144 | 0.0 = 892.    | 80                  |           |        |  |
| NPV = the sum of all these v                             | <u>alues = 182</u>             | 8.98 (comp  | are to net pr | <u>roject value</u> | = 3480.0) |        |  |

### **Internal Rate of Return**

#### **#**The Discount Factor for which NPV = 0

Cften the basic criterion for corporate investment decisions

| vear | net cash flow | discount rate | NPV            | IRR |
|------|---------------|---------------|----------------|-----|
| 0    | -2700000      | 10            | \$1,664,963.84 | 30% |
| 1    | 420000        | 20            | \$630,401.23   |     |
| 2    | 1440000       | 25            | \$285,250.56   |     |
| 3    | 1440000       | 30            | \$17,388.51    |     |
| 4    | 1440000       | 35            | -\$74,644.18   |     |
| 5    | 1440000       |               |                |     |

### Risk and Sensitivity Analysis

#### **#**Consider three scenarios:

- **⊠**Optimistic
- ⊠Realistic
- ☑ Pessimistic
- % in energy costs
- % interest rates

#tax rates

### **Funding Alternatives**

#### House House

- ☐ from a central budget
- from a specific departmental or section budget
- payment for energy services by individual budget holders
- retaining the savings achieved.

#### 🔀 External

- ☐ capital loans
- energy performance contracts

### **Energy Performance Contracts and ESCOs**

A comprehensive package of services:

- An energy efficiency opportunity analysis.
- Project development.
- Engineering.
- Financing.
- Construction/implementation.
- Training.
- Monitoring and verification.

### **M&T Finding Answers**

- How many energy saving measures have been introduced
- When did each take effect?
- How much energy has each measure saved?
- Are all the energy saving measures still working?
- Have any breakdowns been restored?
- How much energy will be required for a budgeted production of 120 tonnes a week in the next quarter?
- **What further savings can be achieved?**

| Week | Production (tonnes) | Energy<br>kWh | Specific<br>Energy<br>(kWh/Tonne) |
|------|---------------------|---------------|-----------------------------------|
| 1    | 150                 | 140726        | 938                               |
| 2    | 80                  | 103223        | 1290                              |
| 3    | 60                  | 90764         | 1513                              |
| 4    | 50                  | 87567         | 1751                              |
| 5    | 170                 | 146600        | 862                               |
| 6    | 180                 | 154773        | 860                               |
| 7    | 120                 | 121575        | 1013                              |
| 8    | 40                  | 81436         | 2036                              |
| 9    | 110                 | 115586        | 1051                              |
| 10   | 90                  | 105909        | 1177                              |
| 11   | 40                  | 83916         | 2098                              |
| 12   | 50                  | 86272         | 1725                              |
| 13   | 140                 | 125892        | 899                               |
| 14   | 155                 | 138966        | 897                               |
| 15   | 165                 | 139922        | 848                               |
| 16   | 190                 | 152274        | 801                               |
| 17   |                     | 77788         | 1945                              |
| 18   | 65                  | 82711         | 1504                              |
|      |                     | 124317        | 829                               |

### **Data is still Data**



### **Energy Consumption and Production**



### CUSUM



### **Regression Analysis**



### **Calculating CUSUM**

\_

| Measured Data Specific Total |            |         | Baseline  |        |            | Control Chart |        |            |
|------------------------------|------------|---------|-----------|--------|------------|---------------|--------|------------|
|                              |            |         | Predicted |        |            |               |        |            |
|                              | Production | Energy  | Energy    | Energy | Difference | CUSUM         | Actual | Difference |
| Week                         | (T)        | (kWh/T) | (kWh)     | (kWh)  | (kWh)      | (kWh)         | (kWh)  | (kWh)      |
| 1                            | 150        | 938     | 140726    | 138020 | 2706       | 2706          | 125029 | 1569       |
| 2                            | 80         | 1290    | 103223    | 102250 | 973        | 3679          | 92829  | 1039       |
| 3                            | 60         | 1513    | 90764     | 92030  | -1266      | 2413          | 83629  | 713        |
| 4                            | 50         | 1751    | 87567     | 86920  | 647        | 3060          | 79029  | 853        |
| 5                            | 170        | 862     | 146600    | 148240 | -1640      | 1420          | 134229 | 1237       |
| 6                            | 180        | 860     | 154773    | 153350 | 1423       | 2843          | 138829 | 1594       |
| 7                            | 120        | 1013    | 121575    | 122690 | -1115      | 1728          | 111229 | 1034       |
| 8                            | 40         | 2036    | 81436     | 81810  | -374       | 1354          | 74429  | 700        |
| 9                            | 110        | 1051    | 115586    | 117580 | -1994      | -640          | 106629 | 895        |
| 10                           | 90         | 1177    | 105909    | 107360 | -1451      | -2091         | 97429  | 848        |
| 11                           | 40         | 2098    | 83916     | 81810  | 2106       | 15            | 74429  | 948        |
| 12                           | 50         | 1725    | 86272     | 86920  | -648       | -633          | 79029  | 724        |
| 13                           | 140        | 899     | 125892    | 132910 | -7018      | -7651         | 120429 | 546        |
| 14                           | 155        |         | 138966    | 140575 | -1609      | -9260         | 127329 | 1163       |
|                              |            | +       | 139922    | TAEI   | 763        | -15023        | 131929 | 799        |
|                              |            |         |           |        |            | 71209         | 147479 | F          |

### **Target Setting -Preliminary Target**



### **Target Setting - Best Historical Performance**



### **Target Setting - Arbitrary 10% Reduction**



### Reporting



### **Detailed CUSUM Report**



### **Three Themes to Energy Management**



### A Process of Continuous Improvement



### **The Good News**

Energy Management Pays Off!
Financial Savings
Improved Competitiveness
Environmental Protection







### Thank you!

#### hari@keralaenergy.gov.in