Cooling Tower Drives MARCH, 2010

Baldor Mission Statement

Baldor's Mission is...

to be the best *(as determined by our customers)* marketers, designers, and manufacturers of industrial electric motors, mechanical power transmission products, drives and generators.

Typical Applications Cooling Towers

HVAC Commercial/Institutional

- HVAC towers pair the cooling tower with a watercooled chiller or water-cooled condenser

Hospitals

University Buildings

- Used by HVAC systems to increase efficiency of the heat transfer process
- Typical range: 25 75 Hp
- Applications:
 - Office Buildings
 - Convention Centers
 - Shopping Malls

Industrial Processing & Power Plants

- Remove heat absorbed in circulating water cooling systems from various sources such as machinery or process materials
- Cool discharge water back to lakes, rivers or oceans at a safe environmental level
- Typical range: 75 – 200 Hp Industrial: Power Plants: 250 - 350 Hp
- Applications:
 - Power Plants
 - Petro Chemical
 - Petroleum Refineries
 Food Processing
- Petroleum Refineries
- Natural Gas

Cooling Tower Designs Field Erect Units Packaged Units

Conventional Cooling Tower Control

Traditional mechanical components:

- Motor (typically 1800 RPM)
- Gearbox
- Pillow block bearing
- Fan Impeller
- Drive shaft
 - Disc Coupling

Cooling Towers are heat exchange systems

- Remove waste heat from a type of fluid

Fan Operation

- Fan speed determined by the diameter of the blades
- Cell design keeps the tips of the fan blades at a safe speed
- Typical rotation is 90 to 230 RPM
- To prevent freezing in cooler climates the fans may reverse

Conventional Mechanical Issues

High Mechanical Maintenance

More components to fail over time:

- Gearbox failures
- Oil leaks & contamination
- Failed & misaligned drive shafts
- Excessive vibration
- Additional replacement time due to large mounting frame

- Conventional Cooling Tower Control
 - Lightly loaded majority of the time
 - Peak load for short durations
 - Started across the line
 - High inrush currents
 - Mechanical stresses

New Direct Drive Technology

- Matched Performance VS1CTD drive and RPM-AC Motor
- Baldor VS1CTD drive designed for variable speed operation

High Torque Direct Drive Motor:

- Laminated Frame IPM (Permanent Magnet)
- Motor is designed as a drop in replacement for existing gearbox packages; matching bolt holt patterns
- Water tight motor uses fan air stream for optimal cooling
- Improved efficiency over standard gearbox and motor

Fan couples directly to the motor shaft

Eliminate High Maintenance Components

Conventional Tower Design

Coupling Drive Shaft Coupling Gear Box

Benefits:

AC Motor

- Eliminates gearbox, jack shaft, pillow block bearings and couplings
- Runs Quieter & Saves Energy
- Increases safety due to fewer components
- Improves reliability & reduces maintenance
- · Lower installation cost by eliminating alignment issues of mechanical components
- Reduces cooling water contamination from gearbox oil and leakage

New Direct Drive Tower Design

AC Motor

Direct Drive Cooling Tower Install

Installation process simplified

- Basic assembly is smaller and easier to lift into place
- Weight is center distributed to load making the installation process safer
- One piece fit into existing cooling tower
- Field tested (Clemson University conversion made in less than a day)

Conventional Tower Design

New Direct Drive Tower Design

Cooling Tower Motor

PM Motor Improvements

Industry requires improved motor power density and increased efficiency

Permanent Magnet Motors meet these needs

- Due to dramatic improvements in PM materials, these types of motors are now viable alternatives to standard induction motors
- Laminated RPM-AC frame allows more room for active material creating a power dense package
- Frame construction improves thermal transfer and heat dissipation capability of the motor
- Efficiency of PM motors is a band level higher than induction cast iron frame motors

Mechanical Advantages:

- Greased bearings only need inspection every few years
- RPM-AC motors run at slow speed eliminating excessive vibration from the system
- Noise levels for PM motors are reduced over the traditional cooling tower design

Direct Drive Cooling Tower Motor

Laminated Frame Interior Permanent Magnet rotor technology

- Motor is compact enough to direct drive cooling tower fans
- Finned Laminated frame in fan air stream is optimum construction for application
- VPI electrical insulation system for extreme environmental conditions

Mechanical Advantages:

- Drop in replacement for gearbox
- Fan mounted directly to RPM-AC motor replacing conventional pillow block bearings
- Tower fan air flow cools motor:
 - Provides superior cooling
 over traditional mounting
 - Lower temperatures
 produce longer motor life

Cooling Tower Motor Features

Sealed insulation system:

- Same insulation system used in off shore oil drilling motor applications
- Provides ultra reliable motor life in hostile north sea environment
- Drive end sealing utilizes a slinger and an Inpro seal for superior bearing protection.

Clemson Beta Site Motor

- Test conducted after approximately 1-year of operation
- This test motor did not have E-coat or Flinger cover over Inpro seal
- After 1-year of operation still in good condition

Clemson Motor Inspection Results

- Grease was still in excellent condition
- Bearings showed only minor wear
- Ingress of contamination was minimal
- Insulation was still in excellent condition

RFQ Data Sheet

- Please have data sheets filled out when sending in Quote requests
- Fan Shaft Hp required
- Presently assuming a required min air flow over motor of 500 fpm for 250 frame & 750 fpm for larger frames. This is one of the inputs required.
- We will run an evaluation of the application.

	Project :	
	Air Flow (cfm)	
	Ambient Temp	
	Static Pressure	
	(inches of H2O)	
2.3 Hp	Air Density(Ib/ft^3)	
	Fan mfq P/N.	
	No. Fan Blades	
res / No	"A" (inches)	
3 Bolt Hole P lotor (ft/min)	°attern	
es a Baldor	CTPM Drive	
n motor to dr	ive location	Feet
		Keyway
	1.999" +/0005"	1/2" x 1/4" E/0" x E/40"
	2.374" +/0005"	5/8" X 5/16" 5/8" x 5/16"
	2.024 +/0005	0/8 X 0/10 2/4" × 2/0"
5007 0007	2.999" +/0005"	3/4 X 3/8
	Other Shatt Die De	ALIFARAATS
	Other Shaft Dia Re	quirements
	Other Shaft Dia Re	quirements
0111 1111 1111 1111 1111 1111 1111 111		quirements
	2.3 Hp 2.3 Hp (es / No leight from mo Pattern? g Bolt Hole F lotor (ft/min) res a Baldor n motor to dr "A"	Project : Air Flow (cfm) Ambient Temp Static Pressure (inches of H2O) 2.3 Hp Air Density(Ib/ft^3) Fan mfq P/N. Fan mfq P/N. No. Fan Blades (es / No "A" (inches) Pattern? Yes / No Pattern? Yes / No Pattern Static Pressure Pattern? Yes / No Pattern Static Press Pattern <

Review CT Application

- Fan Dia
- Existing Motor Hp
- Voltage
- Gearbox
- Height Restriction (YES / NO)
- Will the drive be in a control room or outside
- Customer name & location

If all you have is Hp and RPM of fan you can quote but be careful. You might get a motor and drive on site that won't FIT !!!!

Cooling Tower Drive

Baldor VS1CTD Drive

Designed for the cooling tower industry

 Focus is on ease of startup, minimal maintenance and efficiency of operation

Matched Performance drive and motor

- RPM-AC motor models are stored in the VS1CTD drive software
- Precise control capability
- Simplified Cooling Tower Startups
- Eliminates the need for users to input data
- Basic software parameter set designed exclusively for the cooling tower industry

Designed around proven H2-Technology

Unique Sensorless Vector Software

- Smooth, low speed operation
- Optimized motor control increases efficiency

VS1CTD Ratings

			Normal Duty (Standard 4kHz PWM)							
Catalog Number	Input Volts	Frame Size	Innut Amno	Output						
			Input Amps	HP	kW	IC*	IP*			
VS1CTD47-1B	480	AA	11.9	7 1⁄2	5.6	11.9	13.7			
VS1CTD410-1B	480	AA	11.9	10	7.5	11.9	13.7			
VS1CTD415-1B	480	В	23.0	15	11	23.0	26.4			
VS1CTD420-1B	480	В	28.9	20	15	28.9	33.2			
VS1CTD425-1B	480	В	34.0	25	18.7	34.0	39.1			
VS1CTD430-1B	480	С	44.2	30	22.4	44.2	50.8			
VS1CTD440-1B	480	С	55.3	40	30	55.3	63.5			
VS1CTD450-1B	480	С	65.5	50	37	65.5	75.3			
VS1CTD460-1B	480	D	90.8	60	45	90.8	104.4			
VS1CTD475-1B	480	D	116.6	75	56	116.6	134.0			
VS1CTD4100-1B	480	D	136.3	100	75	136.3	156.8			
VS1CTD4125-1B	480	D	143.8	125	93	143.8	165.4			
VS1CTD4150-1T	480	E	204.0	150	112	204.0	234.6			

* The column labeled IC indicates the continuous output current rating of the control and the column labeled IP indicates the peak output current capability of the control for 1 minute.

Optimized Efficiency

Optimized motor speed

- Traditional cooling towers are designed for the "Worst Case" (highest air flow) scenario
- Running the fan at reduced speed saves energy and cost of operating the tower
- Allows for optimized cooling of return water; increasing the efficiency of compressor operation and this components life

- IPM Motor Highest Industry Efficiency
 - Permanent Magnet Motors provide the highest efficiency levels of any motor in the industrial market
 - IPM Motors are fully one band higher than premium efficient motors

Partial Load Power Factor

Cooling Tower Loading

- Typical cooling fans run the majority of their time lightly loaded
- Traditional AC motor power factor is negatively impacted by light loading

- IPM Motor
 Highest Industry Power Factor
 - Permanent Magnet Motors provide high power factor even on light loads
 - Power factor measures the ratio of real power to apparent power
 - Higher power factor allows lower amps to do the same amount of (real) work

Power Factor = Real Power / Apparent Power

VS1CTD Parameters

Reduced Parameter Set

- 25% of the normal parameters are available to the user by default
- Security access required to access more parameters for unique installations
- Documented in Reference Manual

- Menu Structure similar to other VS1 products
- Main Menu
 - Status
 - Basic Parameters
 - Advanced Programming
 - Event Log
 - Diagnostics
 - Display Options
- Advanced Programming
 - 3 Programming Levels
 - Modified Parameters
 - Parameter Linear List

VS1CTD Operating Modes

- The VS1CTD is simplified; only 5 operation modes:
 - Keypad
 - Process Control
 - Network
 - CTD 2Wire (provides 2-wire terminal strip control)
 - CTD 3 Wire (provides 3-wire terminal strip control)

The VS1CTD does not use Autotune

- Critical motor parameters are integrated into the VS1CTD firmware to provide rapid cooling tower startups
- Existing motor design (uses a firmware database)
- New motor design
 - Use custom motor block
 - · Parameters are integrated into motor data sheet

VS1CTD Trickle Current Heating

- Trickle Current Heating is used to keep the temperature of the motor above the dew point during times when not in use.
- Set by a single parameter (units of amps)
 - Limited to 50% FLA of motor (0 amps disables)
 - Wattage calculation based upon amperage and motor stator resistance
- Enabled automatically once motor stops and after a 300 second delay
 - Digital input provided for customers that want control via hardware input for CTD operating modes
 - Modbus coil provided for building automation control systems
- Additional benefit of providing anti-windmilling torque

NO SPACE HEATERS REQUIRED

VS1CTD Accessories and Options

Communication Networks:

- System automation and control can be a requirement for cooling tower operations
- The VS1CTD communicates with multiple networks:
 - BACnet

 - Metasys N2
 EtherNet/IP

DeviceNet

- LonWorks
 PROFIBUS-DP
- Modbus-TCP
 LonWorks (available soon)
- Dynamic Braking
- Input / Output Reactors
- Keypad Extension Cables
- High Resolution Analog I/O Expansion Board
- Ethernet Browser Board

Cooling Tower Resource Material

Web Site Information

www.baldor.com

Web Site Information

New Products

<< Return to list

Baldor Announces New Cooling Tower Control System

Introduction

The present and future market for drives and motors places a high value on operating efficiency, reliability, flexible control, low running temperature, quiet operation and low cost. Permanent magnet (PM) motors are able to meet the market expectations across a wide range of ratings. One such application is Cooling Tower control.

Baldor has designed the Cooling Tower Control system around a specially designed permanent magnet motor that is a drop in replacement for existing mechanical packages. When coupled with the power matched VS1CTD Cooling Tower Drive this system provides unparalleled efficiency and reliability.

Features

- Increased efficiency and power factor
- Operate at optimal system efficiency point
- Increase system reliability
- Mechanical drop in replacement
- · Shaft sealing protects against contamination
- Maintenance free operation
- · Lube for Life bearings
- · Reduced noise levels

VS1CTD Technical Literature

- MN776 Instruction Manual
- Cooling Tower Institute Paper

	T N . DE0		ocoming rower brive
Baldor Cooling	Tower Motor RFQ		
Company Name:	Project :		
Fan Diameter (ft.)	Air Flow (cfm)		
Can Second (DDM)	Ambert Temp	RANKE MC. TRACK	
ran speed (rerw)	(orches of M20)	CATEGORY SANS	
Fan Shaft Hn	(mores or h20)		
This is normally an odd surviver as: 42.3 km	Air Density(Ib/ff*3)		
flased on operating conditions		COOLING TECHNOLOGY INSTITUTE	
	Fan mig P/N.	ooocato reontoecoor atornore	
Voltage required			
	No. Fan Blades	RECENT DEVELOPMENTS IN MOTOR	
Height Restriction? Yes / No	"A" (inches)	TECHNOLOGY ALLOW DIRECT DRIVE OF	
If Yes, please give maximum height from mot	or mounting plate to shaft extension (see diagram	LOW ODEED COOL NO TOWER SHUE	
- "A" dimension)		LOW SPEED COOLING TOWER FANS	
Match Friday Rob Mate Datase	Mar (No	ROBBE MCELVEEN	
Match Existing Bott Hole Pattern?	Tes / No	BILL MARTIN	
If Yes, please give existing Bolt Hole P	attern	BALDOR ELECTRIC	
Air Velocity in Region of Motor (ft/min)			
(shaded area shown below).			
If retrofit			
Gearbox Manufacturer			
Gearbox Model No.		IG TECHU	
The Baldor Solution requires a Baldor	CTPM Drive		
Approximate distance from motor to dr	velocationFeet	8	Installation & Operating Manual MN776
E	En Shak Dia Kanada		installation of operating manual
-	1 000° at 0000° 1/2° a tur		
U	2374"+6.0005" 587 + 515"	VEST. 1950	
A	2.626 +6.00057 507 x 5/157		
~	2.999" +10005" 34" x 38"	WSTITE	
	Other Shaft Dia Requirements		
		The studies and conductors reported in this paper are the results of the author's per-sent. CT has not investigated, and CT	
		representation and any termination and protect, service process, process, and the full may be described herein. The appearance of any technical cash, external normality of administration date for construct economics, wanted, of administration to CD of any constant and administration processing and the CD of the construction and administration of administration to CD of any constant and administration processing administration and administration administration administration and administration	
Questions regarding above information	BALDOR	samply that the information in this publication is then of entry. and CTI dates not recommend, adapter with any statement or portion in the optimization. The spatial adapter is the of entry. The optimization is the optimization of the use of any optimization in this publication. The spatial adapter is the optimization of the use of any optimization in this publication. Council at 2000 kill ratio	
Please contact local Baldor District Office		reserved. This paper has been received by neinberh of the Costing Technology Institute and approved as a staudie construction to costing taker flexibure, and presented by the author at the Annual Conference of CTL	
		Presented at the 2009 Cauling Technology Institute Annual Conference	
		San Antonio, TX - Pethodity 0-12, 2020	
		1	

NG

VS1CTD Commercial Literature

- BR411 Brochure
- FL476 Flyer (electronic only)
- AD Reprint; Success Story and Photos

Success Stories

BALDOR

June 1, 2009

Baldor is Redefining the Future of Cooling Tower Fan Designs with Innovative "Green" Motor and Drive Technology

For the past 20 years, Rod Applegate, the owner and president of Tower Engineering, Inc., has been searching for a better method of driving taxo in cooling towers. He says he has finally found what he's been looking for in Baldor's new *RPM ACP*: Cooling Tower Drive.

Since 1966, Applicate's company has been designing and installing high-quality cooling lowers for the large installation market, holiuding hospitals, universities and aimports. They all use an air conditioning system that requires a cooling tower to exchange heat and return cooled water back to the chillen. These towers use large high inertia fans to pull all over a water soulder media to cool the water as put of the process. The most common method for dirking the lan in molern cooling towers has been a night angle gear reducer, drive shaft, and disc coupling arrangement, along with a standard foot mounted AC motor.

" have always wanted to get rid of these goarboxes and all of the other moving parts," says Applepties Misalignment, excessive Vitration and noise are all inherent problems with this system. With the high speeds, the gearboxes generates too much heat and the seals and bearings can have very short lives. There are just too many things that can go wrong."

There is also a significant maintenance issue for the owner. "Keeping up with regular oil changes of the granbox and inspections of the flexible elements are critical," says Appleptin. "growing either of these hos can, and han, resulted in the catastrophic failure of equipment."

Baldor Adjustable Speed Direct Drive Cooling Tower Motor and Drive System

Typical mater, shaft and peoples for drive.

Application Example

On the campus of Clemson University in Clemson, SC

Cooling Tower Information Built in 1986 Ceramic Cooling Tower Job # CT-1206	THE FOLLOWING MECHANICAL EQUIPMENT COMPONENTS
2 Fan Units	CLEMSON UNIVERSITY GREENVILLE, SOUTH CAROLINA
CERAMIC COOLING TOWER FORT WORTH, TEXAS ERECTED FOR CLEMSON UNIVERSITY GREENVILLE, SOUTH CAROLINA	A) Manufacturer: Reliance B) Frame Size: <u>326 T</u> Driveshaft: A) Manufacturer: Formsprag B) Model: <u>A5-35</u> Gear Reducer: A) Manufacturer: Amarillo B) Model: <u>4155</u> C) Ratio: <u>8.5 to 1</u> Pan: A) Manufacturer: Hudson B) Model: <u>APT-18B-5</u> C) Diameter: <u>18'-0"</u> Miscellaneous Hardware: A) Murphy Model: <u>BL-175-EX Oil Level Switch</u> B) Robertshaw Model: <u>366 Vibration Switch</u> C) VSM Module: <u>STD 230/115-15 Vibration St</u> Time Delay Module COOLING TOMER INSPECTION, MAINTENANCE AND PROCEDURES GUIDE <u>Miscellaneous Cooling Tomer Inspection, MAINTENANCE AND PROCEDURES GUIDE</u> <u>Miscellaneous Cooling Tomer Cooling Tomer Cooling Tomer Inspection, MAINTENANCE AND PROCEDURES GUIDE</u>

Clemson Cooling Tower

Existing Motor Nameplate Information Both Units were Reliance Motors Motor 1 S/O: 1MOF26353-G1-WM Motor 2 S/O: 1MOF26353-G2-WM Frame Size: 326T Rating: 50HP @ 1765 RPM / 12.5 HP @ 885 RPM 480 V / 3 Phase / 60 Hz

Clemson Cooling Tower

Amarillo Gear Box Information

2 Units Model: 155 (single reduction) Gear Ratio: 8.5 to 1 Pinion: 8 Teeth Ring Gear: 68 Teeth

Clemson Cooling Tower

Fan Information (Both Units) Manufacturer: Hudson Fans Model: APT-18B-5 Diameter: 18' - 0"

Clemson Installation Test Data

	2-Speed, 326T Induction Motor	RPM AC, FL4493 PM Motor	
Fan Load	41.5 Hp	41.5 Hp	
Gearbox and couplings Efficiency	90.2%	N/A	
Motor Horsepower	46.0 Hp	41.5 Hp	
Motor Efficiency	90.0%*	93.1%	
Drive	N/A	98.8%	15 LW
Input kW	38.1	33.6	4.5 KW Savings
Total Efficiency	81.2%	92.0%	

- New motor is 93.6% efficient (existing motor is 22 years old)
- Gearbox manufacturer states gearbox efficiency at 96%
- Test data indicates mechanical system (gearbox, couplings, driveshaft) is 90.2%

Data verified by Clear Air Engineering on site at Clemson University

* Published Data

Clemson Installation Test Data

Loaded Noise Levels (A-weighted)								
Average	High Speed	Low Speed						
Induction NEMA Motor Tower	82.3 dBA	74.4 dBA						
Laminated Frame IPM Tower	77.7 dBA	69.0 dBA						

Data verified by Clear Air Engineering on site at Clemson University

50 HP @ 207 RPM 1670 lbs.

Clemson Project Summary

- Laminated Frame Interior PM motor technology enables direct drive gearless system
 - Gearbox low speed lubrication issues are eliminated
 - No drive shaft
 - No couplings
 - No guards
 - No alignment
 - Minimizes blade load fluctuation
- Motor can be configured to be drop in replacement for gearbox
 - Clemson University Beta site was a drop in
 - Conversion at Clemson took under six hours
- Improved Reliability and Maintainability
 - Simplified System
 - Increased overall system efficiency
 - Elimination of gearbox provides biggest improvement in overall fan drive system efficiency
 - Direct motor reduces noise level of cooling tower
- Although a Baldor V*S drive is required, the majority of cooling towers are being retrofitted with VFDs for overall cooling tower system efficiency improvement

Direct Drive Savings and Comparison

- Simplified installation and reduced maintenance are the major selling points
 - No gear, line shaft, couplings guards, etc
- Biggest gains in energy savings when system takes advantage of airflow
 - Reduces the overall Motor HP requirements for the fan
 - 50-60% energy savings are typical
 - Applying drives on NEMA induction motors saves a similar amount of energy as with the Baldor PM direct drive motor solution
- Old retrofits can show significant energy savings
 - Both PM or Induction motor upgrades if the original gear and motors are lower efficiency
 - 10-15% energy savings are possible
- Minimal energy savings if variable speed is not required
 - Efficiency difference between Baldor IPM motor and newer efficient installation is minimal
 - 2% Plus or minus energy savings is the expectation
 - The primary reason is that the efficiency of the PM motors at the very low speeds of the fan is not very high, drive losses also have to be considered

Thank You

VS1CTD Operating Modes

- The VS1CTD has been simplified with only five (5) operating modes
 - Keypad
 - Process Control
 - Network
 - CTD 2Wire
 - CTD 3 Wire

CTD 2Wire Operating Mode

- Provides for 2-wire terminal strip control
- This example shows contactors on the output and 4-20mA speed control

PERMANENT MAGNET MOTOR

WHEN SHAFT IS ROTATED,

VOLTAGE WILL BE GENERATED

AT THE TERMINALS. 592-VT

Slide 44

CTD 3Wire Operating Mode

- Provides for 3-wire terminal strip control
- This example shows a 3-position disconnect on the output and potentiometer speed control

VS1CTD Startup Sequence

• Follow the "flow" of the User's Guide

- Read and understand warnings and cautions
- Verify installation
 - Rating of drive meets or exceeds FLA of motor
 - Environment is proper for enclosure and drive is mounted securely on vertical surface
 - Incoming power and motor leads in separate conduits with a ground wire pulled in each conduit
 - Motor thermal leads connected and run in separate conduit
 - · Vibration switch connected and run in separate conduit
 - May need separate control power
 - Wires meet wire gauge specifications and are tightened properly per torque specifications
 - Drive chassis is solidly grounded
 - Control signals connected and run in separate conduits from power
 - Choose operating mode to determine connections
 - External device for drive enable (J2-8) required

VS1CTD Startup Sequence

• Follow the "flow" of the User's Guide (Continued)

- Make sure motor and fan are securely mounted and free to rotate
- With enable circuit open (J2-8), apply incoming power
- Drive powers up within "Basic Parameters" menu
 - Enter motor nameplate data
 - Execute "Calc Motor Model"
 - Select operating mode
 - Place drive in "Remote"
- Run motor
 - Enable drive and then provide a run command
 - Motor will be energized at zero speed with an alignment current
 - Motor will rotate a partial revolution until magnets aligned under stator field
 - Drive locks in the magnet position
 - Drive starts ramping to set speed

Done!

VS1CTD Does Not Use Autotune!

Existing motor design

- Search firmware database
- New motor design
 - Use custom motor block
 - Parameters to be integrated into motor data sheet

VS1CTD Calc Motor Model

Calc Motor Model Requirements

- Enter motor design number for existing motor
 - If non-existent, prompted to use custom motor block
- For new motor, enter data from motor electrical design into custom motor parameter block
- Execute Calc Motor Model
- Drive will not run until successful (fault occurs indicating this problem)

Cooling Tower - System

• Motor and Drive Package (On Bus):

CTPM4412522D4125 = Package Motor & Drive

CTPM4412522 = Motor CTPM4412522

D4125 = Drive VS1CTD4125-1B

Cooling Tower Package Ratings

RPM AC Cooling Tower Motor and Drive Specifications

Fan Reference Dia. (ft)	Fan Torque (Ib ft)	Min. Required Air Velocity (ft/min)	Motor Base Speed (RPM)	Motor HP at Base Speed	Motor Frame Size	Motor & Drive Catalog No.	Motor Full Load Amps	Aprx. Motor Wt. (Ib)	*Motor Height "M" (in.)	Drive Max Amps	Drive Frame
	u orașe de					Air Cooled Units					
6	95		550	10	FL2554	CTPM2501050D410	11	375	14.87	11.9	AA
10	140	500	375	10	FL2562	CTPM2501032D410	11	440	16.87	11.9	AA
10	210	500	375	15	FL2570	CTPM2501535D415	14	515	18.87	23.0	В
10	263	1	300	15	FL2578	CTPM2502037D415	22	590	20.87	23.0	В
10	286		275	15	FL2873	CTPM2801527D415	23	610	18.87	23.0	В
12	382]	275	20	FL2882	CTPM2802027D420	26	705	21.12	28.9	В
12	438		300	25	FL2890	CTPM2802530D425	24	790	23.12	34.0	В
12	630		250	30	FL4472	CTPM4403025D430	43	1154	17.59	44.2	С
12	700]	300	40	FL4472	CTPM4404030D440	43	1154	17.59	55.3	С
10	808		325	50	FL4477	CTPM4405032D450	50	1290	18.84	65.5	D
14	1050	750	250	50	FL4485	CTPM4405025D450	59	1515	20.84	65.5	D
16	1313		200	50	FL4493	CTPM4405020D450	59	1730	22.84	65.5	D
18	1576		200	60	FL4402	CTPM4406020D460	71	1980	25.09	90.8	D
18	2101		150	60	FL4413	CTPM4406015D460	71	2290	27.84	90.8	D
18	2251		175	75	FL4421	CTPM4407517D475	76	2510	29.84	116.6	D
18	2626		200	100	FL4429	CTPM4410020D4100	94	2730	31.84	136.3	D
14	2918		225	125	FL4440	CTPM4412522D4125	129	3035	34.59	144.0	D

Cooling Tower Nomenclature - Motor

• Motor Only 125HP, 225RPM, FL4440 (On Bus):

CTPM4412522

CT = Cooling Tower PM = Permanent Magnet Salient Pole Rotor 44 = 440 frame size (first two digits of frame) 125 = 125HP 22 = 225 RPM (first two digits of base speed)

RPMAC Cooling Tower Product Line

RPMAC Cooling Tower Product Matrix

Current ratings FL250, FL280 and FL440, Future Ratings Available March 2010 FL5800

Speed															
500	FL2562	FL2562	FL2570	FL2578	FL2882	FL2890	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5815
475	FL2562	FL2562	FL2570	FL2578	FL2882	FL4472	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4421	FL4440	FL5817
450	FL2562	FL2570	FL2578	FL2873	FL2882	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4421	FL5815	FL5817
425	FL2562	FL2570	FL2578	FL2882	FL2882	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5815	FL5819
400	FL2562	FL2570	FL2578	FL2882	FL2890	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5817	FL5819
375	FL2562	FL2570	FL2578	FL2882	FL2890	FL4472	FL4477	FL4477	FL4485	FL4493	FL4413	FL4413	FL4440	FL5817	FL5822
350	FL2562	FL2578	FL2882	FL2882	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4421	FL4440	FL5819	FL5822
325	FL2570	FL2578	FL2882	FL2890	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5817	FL5819	FL5825
300	FL2570	FL2578	FL2882	FL2890	FL4472	FL4472	FL4485	FL4485	FL4493	FL4413	FL4421	FL4429	FL5817	FL5822	FL5825
275	FL2570	FL2873	FL2882	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4421	FL4440	FL5819	FL5822	FL5827
250	FL2570	FL2882	FL2890	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5815	FL5822	FL5825	FL5830
225	FL2570	FL2882	FL4472	FL4472	FL4477	FL4477	FL4493	FL4493	FL4413	FL4421	FL4440	FL5817	FL5822	FL5827	FL5832
200	FL2578	FL2890	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5817	FL5819	FL5825	FL5832	
175	FL2873	FL4472	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4421	FL4402	FL5819	FL5822	FL5830		
150	FL2882	FL4472	FL4477	FL4485	FL4485	FL4493	FL4413	FL4413	FL4429	FL5817	FL5822	FL5825	FL5832		
125	FL2890	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5815	FL5822	FL5825	FL5830			
100	FL4472	FL4477	FL4485	FL4493	FL4402	FL4413	FL4429	FL5815	FL5819	FL5825	FL5832				
HP	10	15	20	25	30	40	50	60	75	100	125	150	200	250	300

Note; For more compact designs the FL2873 can achieve any FL250 rating, FL4472 and achieve any FL280 rating and the FL5814 can achieve any FL440 rating.

FL5800 frame designations will need to be update to 2F*4 when available

All 250 & 280 frames are 4 pole and 440 frames are 8 pole designs.

8/17/2009

Cooling Tower Nomenclature - Drive

• Drive Only 125HP (On Bus):

```
VS1CTD4125-1B
```

VS1 = VS1 Drive Platform CT = Cooling Tower Family Series D = Drive 125 = 125HP 4 = 460 volts 1 = NEMA 1 enclosure

B = Braking (both transistor and resistor)

See page D-1v of VS1 drives catalog for more detailed information

VS1CTD Ratings

			Normal Duty (Standard 4kHz PWM)							
Catalog Number	Input Volts	Frame Size		Output						
			input Amps	HP	kW	IC*	IP*			
VS1CTD47-1B	480	AA	11.9	7 1⁄2	5.6	11.9	13.7			
VS1CTD410-1B	480	AA	11.9	10	7.5	11.9	13.7			
VS1CTD415-1B	480	В	23.0	15	11	23.0	26.4			
VS1CTD420-1B	480	В	28.9	20	15	28.9	33.2			
VS1CTD425-1B	480	В	34.0	25	18.7	34.0	39.1			
VS1CTD430-1B	480	С	44.2	30	22.4	44.2	50.8			
VS1CTD440-1B	480	С	55.3	40	30	55.3	63.5			
VS1CTD450-1B	480	С	65.5	50	37	65.5	75.3			
VS1CTD460-1B	480	D	90.8	60	45	90.8	104.4			
VS1CTD475-1B	480	D	116.6	75	56	116.6	134.0			
VS1CTD4100-1B	480	D	136.3	100	75	136.3	156.8			
VS1CTD4125-1B	480	D	143.8	125	93	143.8	165.4			
VS1CTD4150-1T	480	E	204.0	150	112	204.0	234.6			

* The column labeled IC indicates the continuous output current rating of the control and the column labeled IP indicates the peak output current capability of the control for 1 minute.

Questions?

