National Workshop on Pumped Storage Hydropower Projects

8th & 9th February 2018 Energy Management Centre Thiruvananthapuram

Compendium of Presentations

Day 2

INDEX

Session - IV Knowledge sharing from Europe/elsewhere		Chair – Peter Matt
1	Economic Evaluation / Financial viability of Pumped Storage Power Plants Case studies – Experiences around the world from a Consultants view point	Dr. Dieter Mueller , Executive Vice President - Hydro Power AF-Consult, Switzerland
2	Self Scheduling of Pumped Storage in Electric Power Market	Dr. P Kanakasabapathy , Amrita Vishwa Vidyapeetham
	Session - V Planning Aspects	Chair – Er. M K Parameswaran Nair
3	Experience sharing on Investigation, Planning & Design, Implementation, statutory clearances for Pumped Storage Hydro power plants in India	Er. Amitabh Tripathi, General Manager (D&R), WAPCOS
4	Investigation, Planning & Design, Implementation for new pumped of Pumped Storage Project	Mr. Peter Matt. Head of Engineering Services - Vorarlberger Illwerke AG, Austria
5	Regulatory Issues	Mr. Sivaprasad, KSERC
Session - V Load Scheduling and other technical Aspects		Chair – Dr. PS Chandramohan
6	Pumped Storage Power Project Research – Kerala Case Study	Dr. P G Latha, CUSAT
7	Proposed Pumped Storage Scheme of Damodar Valley Corporation	Er. Sathyabrata Banerjee , Dy. Chief Engg, DVC
8	Overview of Pump Storage Plants - Hydro-Mechanical & Electrical aspects	Er. Sanjai Dhar Dwivedi , Asst. Vice President & Head – Engg Turbine & Valves VOITH HYDRO, India

National Workshop on Pumped Storage Hydropower Projects 8-9 February, 2018/Thiruvananthapuram/India

ÅF's Experience in Pumped Storage Hydro Power

Dr. Dieter Mueller Vice President, Head of Hydro Power ÅF – Energy Division

AGENDA

ÅF Group

- Facts at a glance
- The business sectors

ÅF in Energy

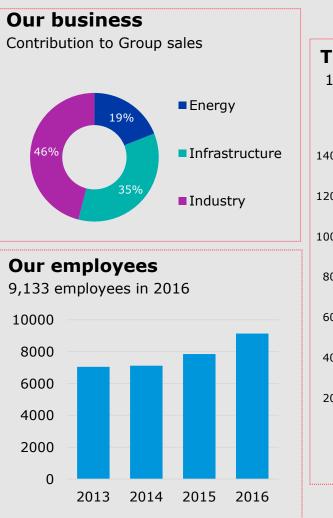
- Our services
- ÅF in the market

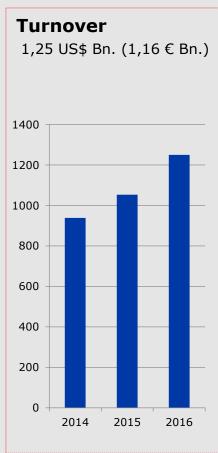
ÅF in Hydro Power

- Competences and services
- A selection of recent projects

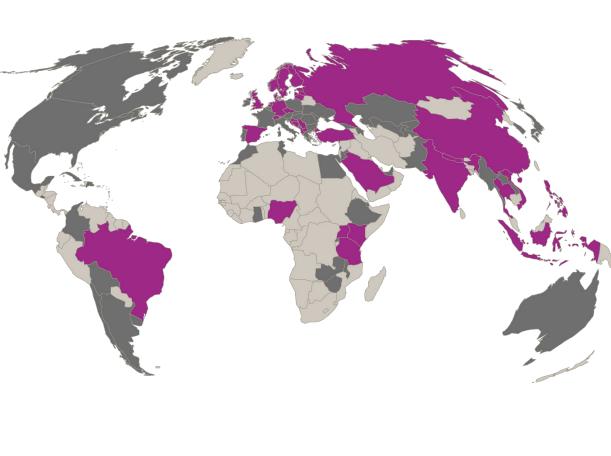
ÅF in Pumped Storage Hydro Power

- Why PSPP?
- Examples for Potential Studies Concept/Feasibility Studies - Design and Construction





Facts at a glance


Key figures and profile in 2016

- Headquarter Stockholm, Sweden
- Stock Listed at Nasdaq OMX
- Active in over 100
 Countries: On four continents; Europe, Asia, South America and Africa
- Number of assignments: ÅF performs over 30,000 assignments for more than 10,000 clients

ÅF's presence worldwide Global expertise backed by local knowledge

Domestic Markets:

Sweden	Czech Republic
Norway	Switzerland
Denmark	Spain
Finland	

Other main offices with engineering

resources:	Macedonia
Brazil	Myanmar
Estonia	Nepal
Germany	Nigeria
India	Russia
Indonesia	Serbia
Iran	Tanzania
Italy	Thailand
Kenya	The Nether
Kingdom of Saudi Arabia	Turkey
Lithuania	United King
	Vietnam

al ria ia ia ania iland Netherlands

ey ed Kingdom

ÅF has offices and projects ÅF has carried out projects

One business – three business sectors

AGENDA

ÅF Group

- Facts at a glance
- The business sectors

ÅF in Energy

- Our services
- ÅF in the market

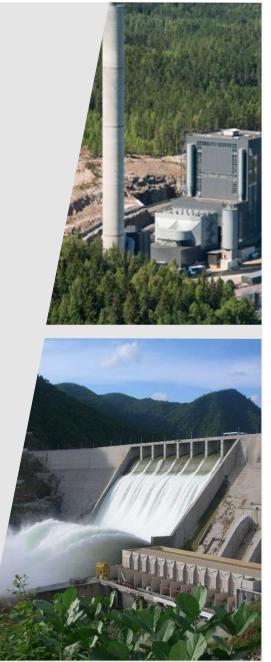
ÅF in Hydro Power

- Competences and services
- A selection of recent projects

ÅF in Pump Storage Power Plants

 Examples for Potential Studies – Concept/Feasibility Studies - Design and Construction

Energy


ÅF is one of the world's engineering and consulting companies within energy

OUR CLIENTS ARE FOUND IN:

- Hydropower
- Nuclear energy
- Renewable energy
- Thermal energy
- Transmission and distribution

WE ARE EXPERTS IN:

Consultancy and engineering services in energy markets, covering the full lifecycle of an investment project in the fields of power generation, transmission and distribution

Full scale of technical and financial advisory services:

- Hydro Power
- Thermal Energy
- Nuclear Energy
- Power utilities
- Energy related industry
- Government/municipalities
- Local authorities

Further fields of activities:

- Renewable Energy
- Power Distribution
- Market Modeling Studies
- Energy Policy Issues
- Transmission/Distribution companies
- International funding institutions
- Construction companies
- Industrial companies

Feasibility Studies	Project Development Ir	mplementation Operation & Maintenance
Consulting studies	Project management, Contractor supervision	Expert services
	Basic design, Design review	
	Engineering management, Supervision and Design review	
	Detail engineering	

ÅF in the market

We rank #1 pure engineering company in the world

- 10th largest international design firm in power
- The largest international independent power engineering company

10

ÅF Group

- Facts at a glance
- The business sectors

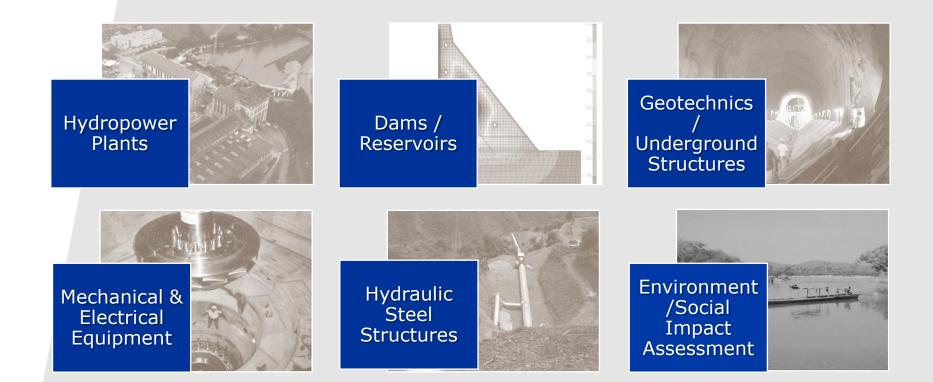
ÅF in Energy

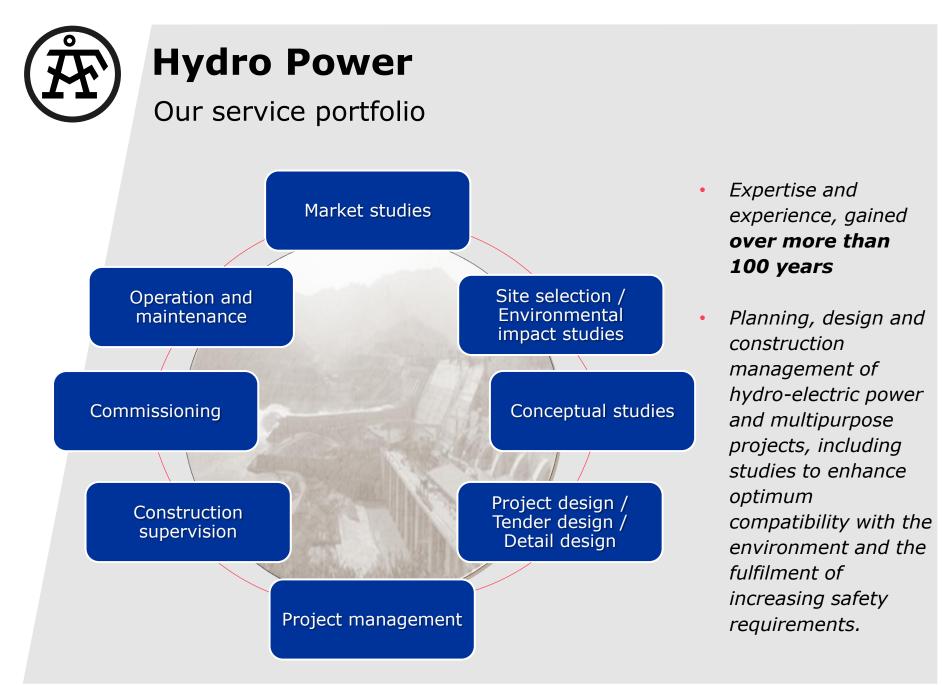
- Our services
- ÅF in the market

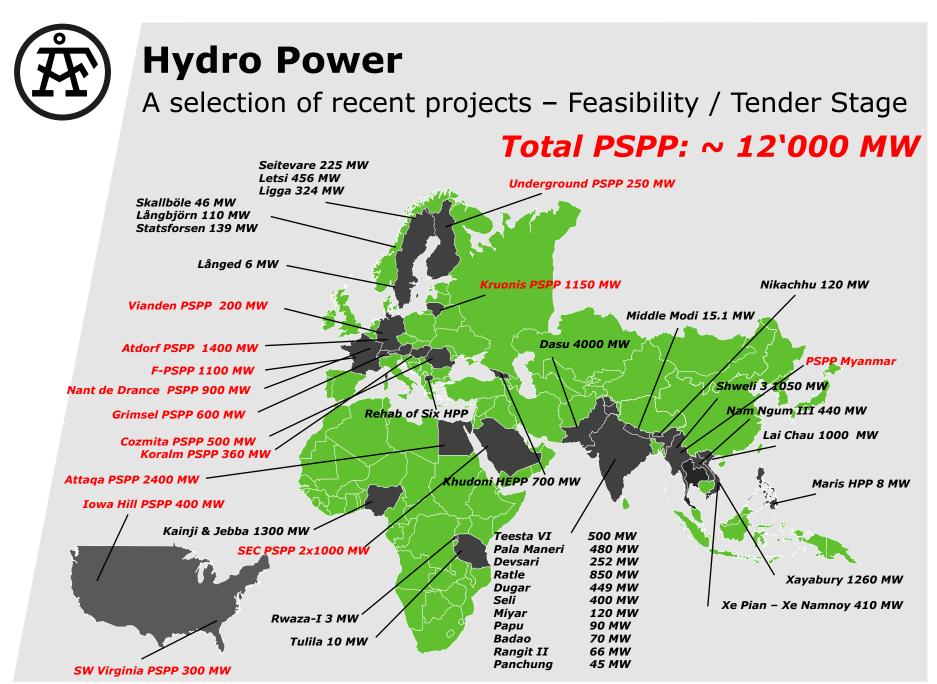
ÅF in Hydro Power

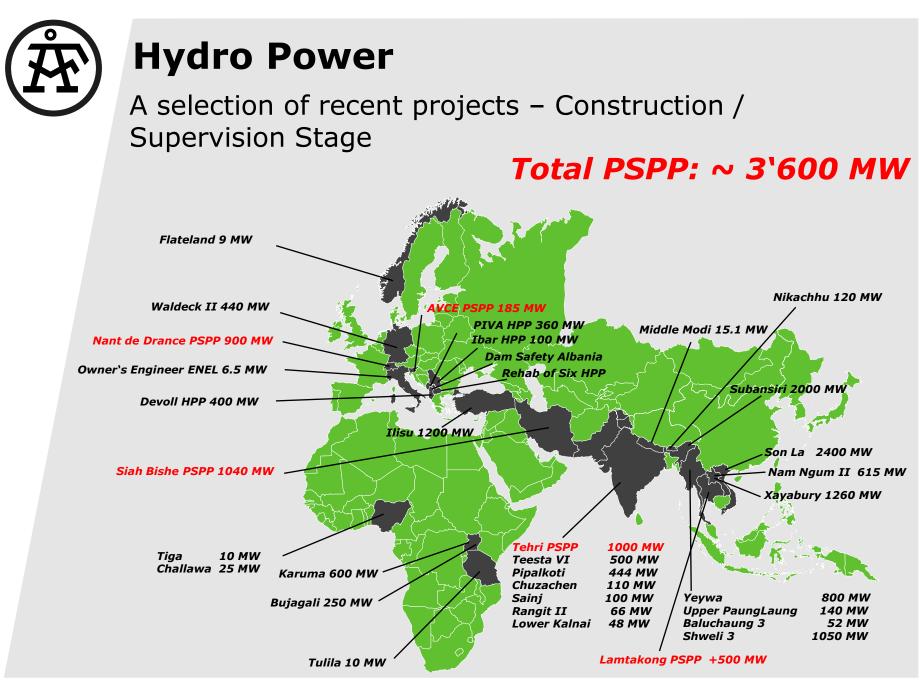
- Competences and services
- A selection of recent projects

ÅF in Pumped Storage Hydro Power


- Why PSPP?
- Examples for Potential Studies Concept/Feasibility Studies - Design and Construction







Competences and services

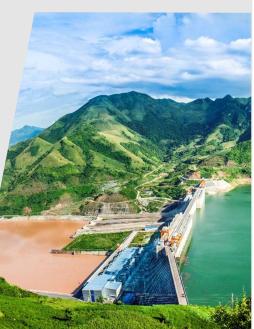
18

ÅF Group

- Facts at a glance
- The business sectors

ÅF in Energy

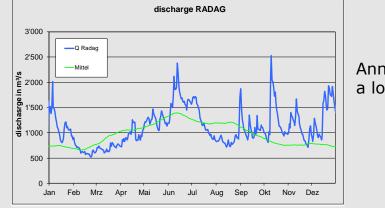
- Our services
- ÅF in the market

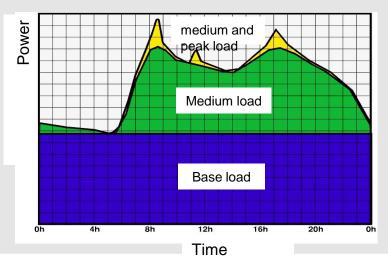

ÅF in Hydro Power

- Competences and services
- A selection of recent projects

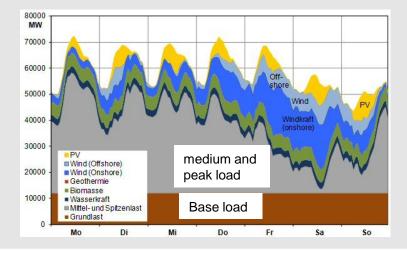
ÅF in Pumped Storage Hydro Power

- Why PSPP?
- Examples for Potential Studies Concept/Feasibility Studies - Design and Construction




Pumped Storage Power Plants (PSPP)

History of pump storage operation



Annual energy storage at a local level

Economic optimization of nuclear power

Storage of renewable energy, security of supply

Pumped Storage Power Plants (PSPP)

Key Reasons/Benefits for Pumped Storage Power Plants

- Flexibility to storage electricity of renewable/nuclear energy
- Compensation of volatility of renewable energy and improvement of operation of thermal power production (optimization of conventional must-run capacities); Reduction of part of fossil dependence.
- The volatility of prices and the average price of electricity will be stabilized.
- The electricity system is stabilized overall.
- Security of supply and quality of supply for industrial and private customers are ensured even with a high expansion of renewable energies
- Grid services: load balancing, Black start and isolated grid operation, Regulation energy, Ancillary services
- PSPP: mature technology, very flexible, fast acting, high performance, limited impact on environment, long operation life

Our services and experience in Pumped Storage Power Plants (PSPP)

Potential Studies

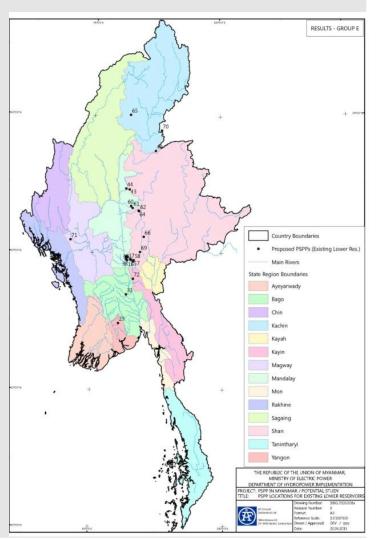
Example of Myanmar PSPP

Concept/Feasibility Studies

- Recent projects
- Magna and Baysh PSPP, Saudi-Arabia

Design and Construction

- Recent Projects
- Specific solutions for civil and EM

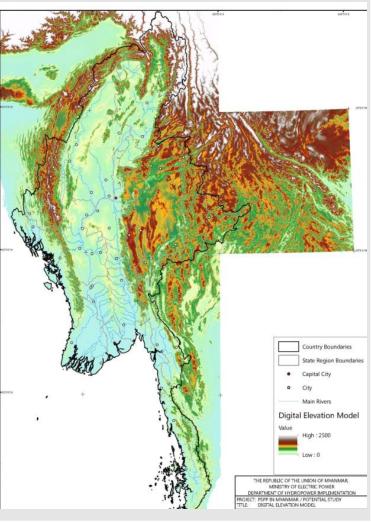


• 2013

ÅF`s role

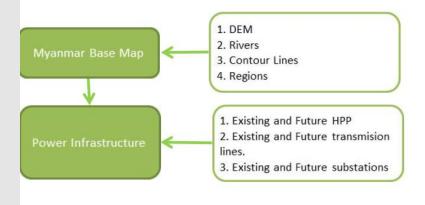
Evaluate a list of potential locations for PSPP in Myanmar in order to:

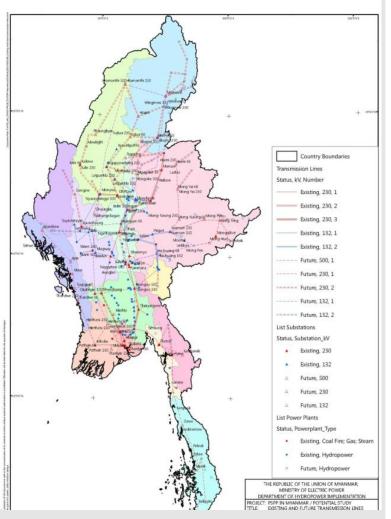

- regulate power demand
- flatten out load variations on the power grid
- Allow an energy management by helping:
 - the electricity network stability,
 - providing reserve energy and
 - responding to sudden changes



Methodology and Basic Data

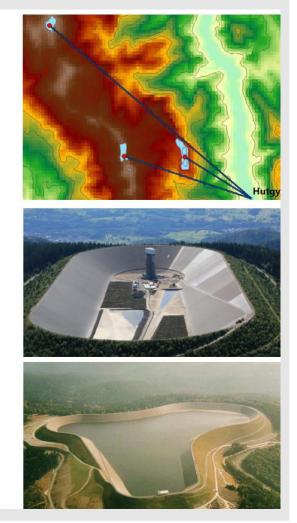
- Based on the application of Geographic Information Systems (GIS), guided by predefined criteria according to the needs of the Study.
- Undertaken a ranking analysis, based on investment cost, installed capacity and distance to power demand centres within Myanmar.

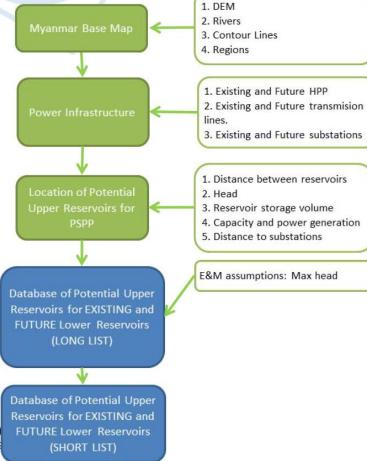


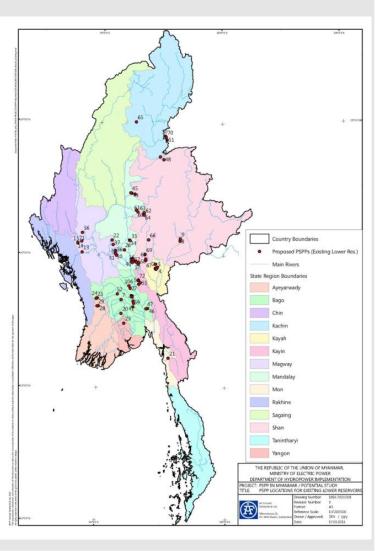


Methodology and Basic Data

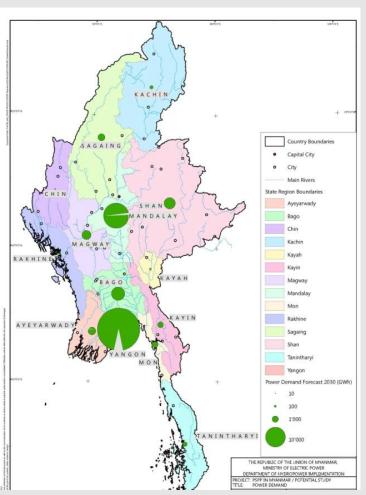
- Based on the application of Geographic Information Systems (GIS), guided by predefined criteria according to the needs of the Study.
- Undertaken a ranking analysis, based on investment cost, installed capacity and distance to power demand centres within Myanmar.




Myanmar Base Map Nyanmar Base Map Power Infrastructure Location of Potential Upper Reservoirs for PSPP Description Description


- L < 10km</p>
- H >200m
- V >1.5hm³ daily operation 7h turbinning / 9h pumping
- Height of the upper res.= 25m.

--Colenco Limiting reservoir: Upper one

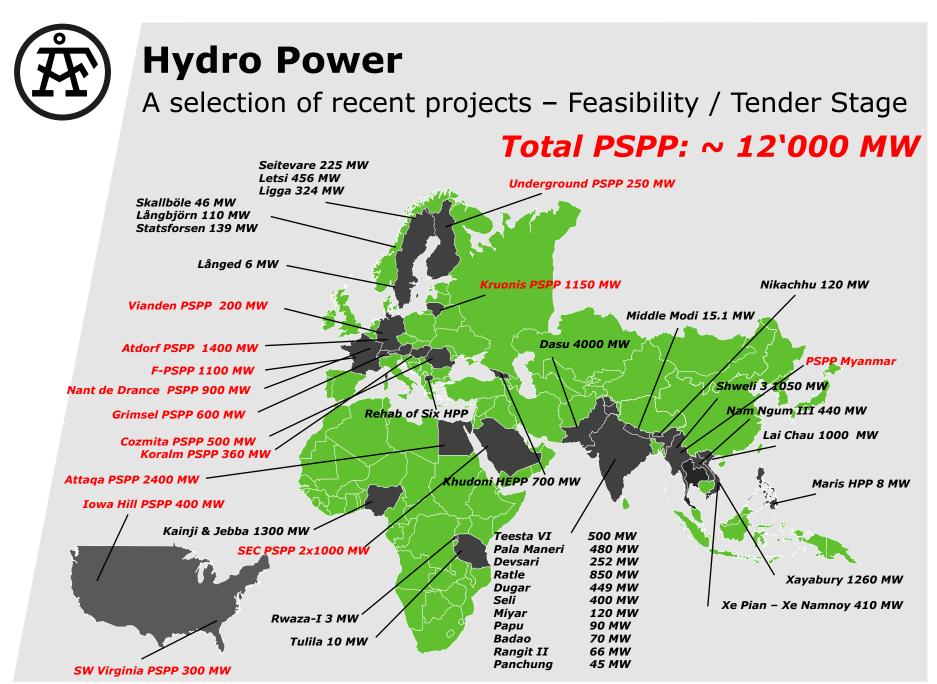


Methodology and Basic Data

Summary and Conclusions

- List of potential PSPP sites were identified based on current available knowledge (topography, river network, existing and future power infrastructure, regional forecasted power demand, and economic viability).
- Results of the Study present the best PSPP locations, ranked separately according to their economic viability (Euro/MW) and according to regional power demand (location of the project).
- Geographic Information System (GIS) technology was used to develop spatial and interactive electronic maps for Myanmar.

Our services and experience in Pumped Storage Power Plants (PSPP)


- Potential Studies
 - Example of Myanmar PSPP

Concept/Feasibility Studies

- Key services
- Example: Magna and Baysh PSPP, Saudi-Arabia

Design and Construction

- References
- Specific solutions for Civil and EM



- 2016 2018
- 2 x 1000 MW

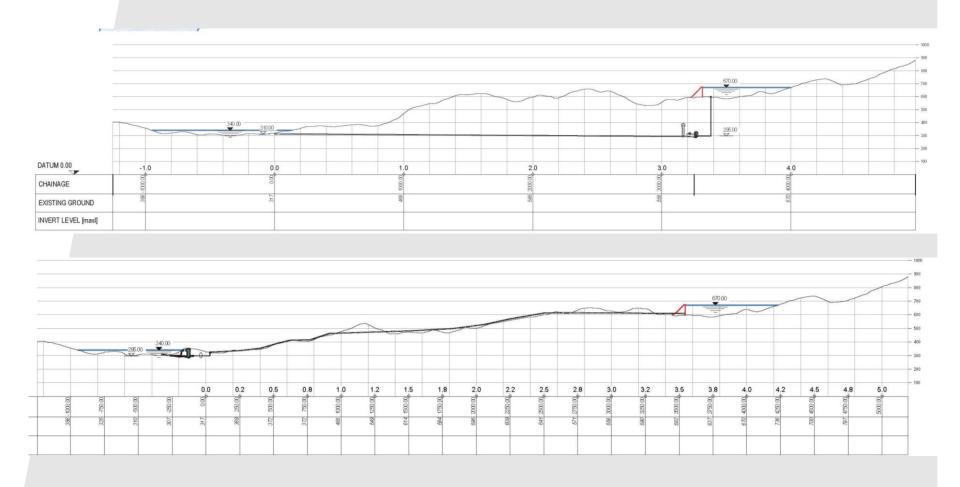
ÅF`s role

- Concept Design/Feasibility Study, Tender Documents and Financial Feasibility for two PSPP's
- Alternative Studies
- Environmental & Social Impact Assessment
- TOR for Site Investigation Works
- Support during EPC Bidding

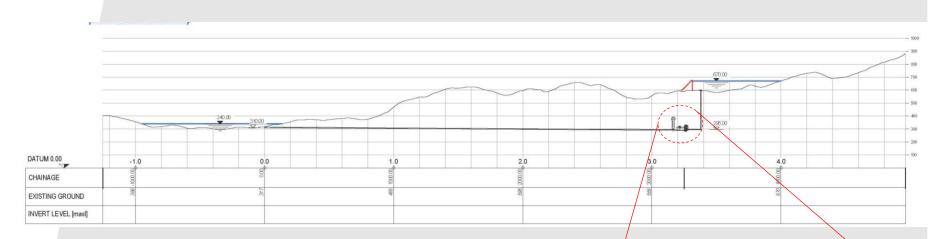
Key Characteristics:

- Two 1000 MW schemes, located in the South close to Yemen (Baysh PSPP) and in the North at the Red Sea (Gulf of Aqaba, Magna PSPP)
- Magna PSPP in combination with a Desalination Plant to be fed via Red Sea
- Baysh PSPP in combination with an existing flood-regulation reservoir (Baysh Reservoir)
- Design Heads: 520 720 m
- Rated Unit Capacity 250 MW
- Number of Unit: 4 with total Capacity of 1000 MW
- Type of Machine: Reversible Pump Turbines, multi-stage Pump

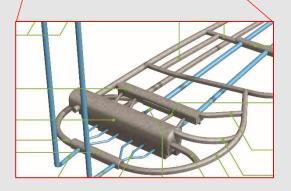
Our services and experience in pump storage power plants (PSPP) for FS Phase


(1) Civil design aspects

- Underground versus surface layout
- Project Optimization

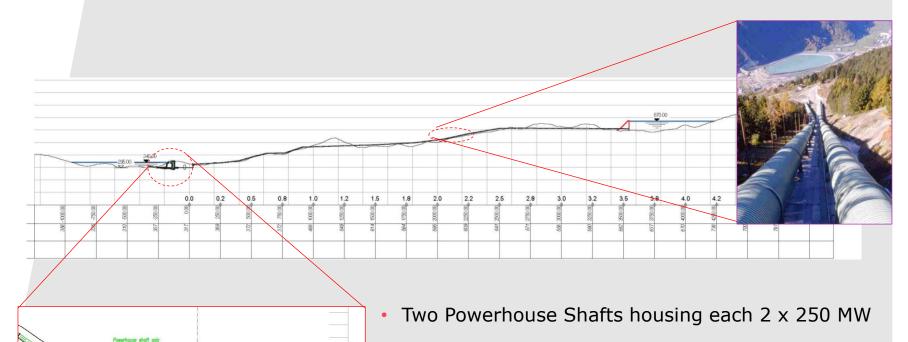

(2) Electromechancial design aspects

- Grid Requirements
- Black Start Ability/Auxilliary Power Supply
- Electromechanical Equipment
- Transient Study


Civil Design – Underground vs. Surface Layout

Civil Design – Underground vs. Surface Layout

- PH Cavern Length for 4 x 250 MW: ~120 m
- Transformer Cavern required (to be < 100 m [Losses, Costs])
- Access Gallery around 3 km length required



Civil Design – Underground vs. Surface Layout

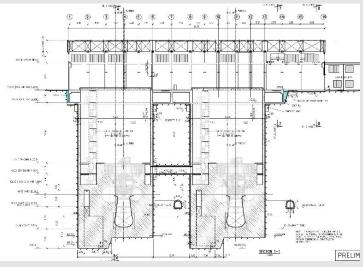
Civil Design – Underground vs. Surface Layout

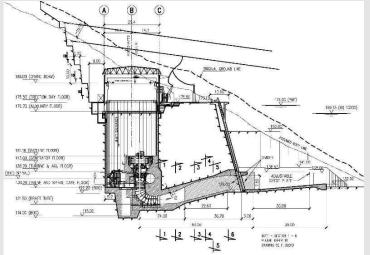
- PH Shaft Depth: ~70 m
- 1 PH Superstructure operating for the 2 Shafts
- Transformer located on the surface adjacent to superstructure
- Two surface, steel lined penstocks, dia ~ 6m

Avce PSPP, Slovenia

- 2003 2011
- 180 MW

- Review of the basic design
- Scheme optimization
- Final design, technical specifications
- Detailed design of the civil works
- Technical support during the civil construction
- Assistance during commissioning


Avce PSPP, Slovenia


- In operation in 2010
- Upper reservoir: 634 masl
- Upstream reservoir capacity: 2.2 Mio. m3
- Net Head: 630
- Number of Unit: 1 with Capacity of 180 MW
- Type of Machine: Asynchronous
- Rated flow per unit: ~ 35 m3/s

Civil Design – Underground vs. Surface Layout

Civil Design – Underground vs. Surface Layout

Underground Layout	Surface Layout
+ Shorter High Pressure Tunnel	+ Access
+ Less Steel lining required	+ Constructability
+ Less critical to earthquakes	+ Power Evacuation
+ Conventional, downstream surge tank required	 Upstream, pressurized surge tank required
 Complexity (and Risk/Costs) of Underground Construction 	- Safety against earthquakes
- Access to Underground Works	 Length of High Pressure Waterways, Steel Lining
- Power Evacuation	 Maintenance, Operation Costs (Surgetank, Penstock)

Civil Design – Considerations on Project Optimizations

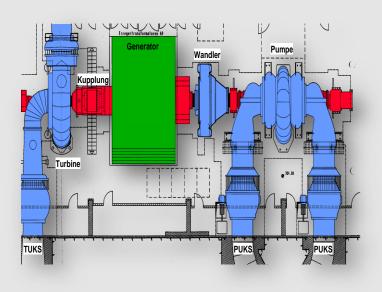
- Design charge
- Required life storage

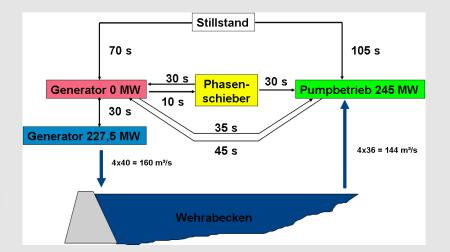
	We Turbining		Turbining	Dumming	Maakh	Daily	Weekly	Daily
а. — Г	8.0	Pumping 1.5	0.0	Pumping 22.0	Weekly 41.086	Daily 9.621	41.575	Daily 10,110
1	8.0	3.0			34.067	9.621	34.556	
		3.0	0.0	18.2 14.5		9.621	34.556	10.110
III	8.0		0.0		27.048			10.110
IV V	8.0	6.0	0.0	10.7	20.029	9.621	20.518	10.110
V	8.0	7.5	0.0	7.0	13.010	9.621	13.499	10.110
			Requ	uired minim	um Storage \	Volume		
	24							50.000
								501000
								45.000
								45.000
	20	-	-					40,000
								40.000
								35.000
	16							55.000
								30.000
2								50.000
DO	12				1.			25.000
Daily Hours	12					•		25.000
ie								20.000
						-	-	20.000
	8							15 000
								15.000
	4							10.000
	280							
								5.000
	0							0.000
		rbining week		Turbinin	g weekend		- Pumping week	

Electromechanical Aspects

Grid requirements

- Grid frequency xx Hz ?
- Power capacity factor (cos phi)?
- Black start and isolated grid operation?
- Regulation energy?
- Active and reactive power requirements?
- Ancillary services?

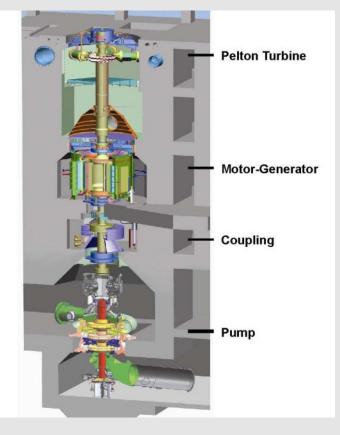

>Unit type (ternary machine, single stage pump turbine, etc.)



Electromechanical Aspects

Electromechanical Equipment

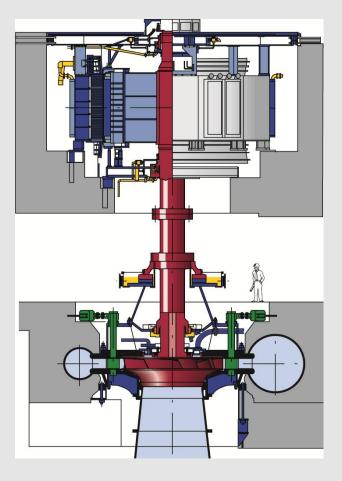
Horizontal Ternary Layout



Electromechanical Aspects

Ternary Machine Set: Basics

- Advantage:
 - Fast mode change
 Turbine ← → Pump
 - Start to pump mode in water
 - Optimized Turbine- and Pump efficiency
 - Possibility of direct hydraulic short circuit (Regulating energy)
- Disadvantage:
 - Increased Investment
 - Additional space requirement
 - Additional valves

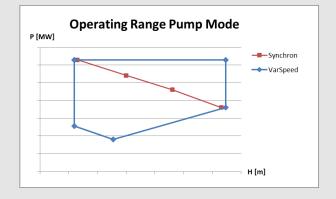

Electromechanical Aspects

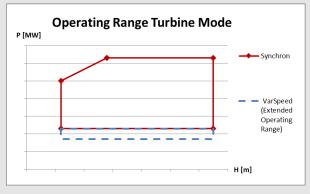
Goldisthal/Germany: reversible pump turbine

	(synchron)(asynchron)					
Number of units	[-]	2	2			
runner diameter	[m]	4.59	4.59			
nominal speed	[rpm]	333	300-346			
max. turbine output	[MW]	325	300			
max. pump power	[MW]	262	291			
max pump head	[m]	338	339			

variation of pump power > 100MW

Source: Vattenfall, Voith Hydro





Electromechanical Aspects

Advantages of Vario Speed machines

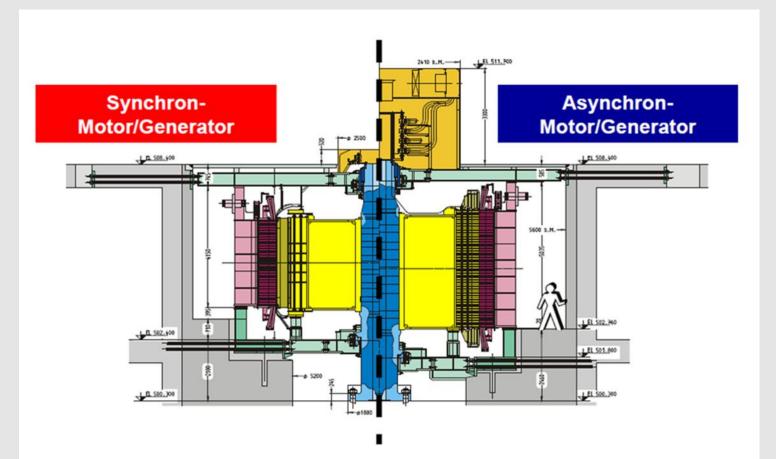
- Performance regulation in pump mode
- Improved turbine efficiency at part load operation
- Bigger operating ranges in pump and turbine mode
- Ancillary services (better active and reactive power regulation)

Electromechanical Aspects

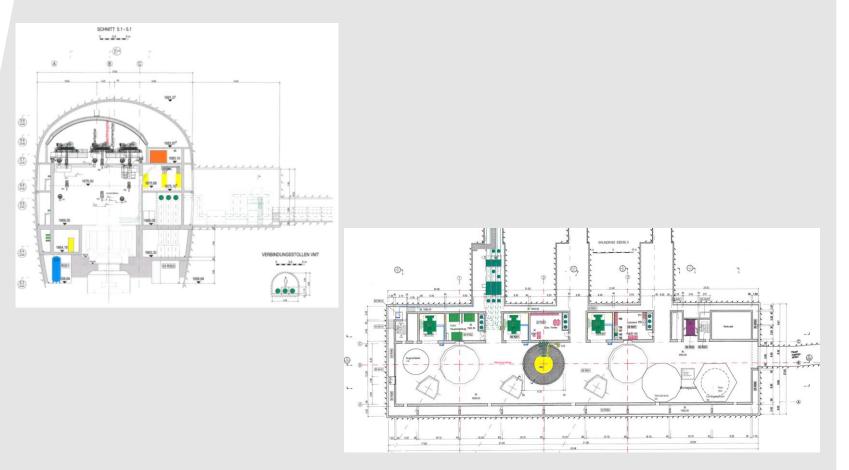
Comparison of Vario Speed machines

Synchronous machine with full size converter

- Relatively new converter technology
- Two suppliers for converters
- Smaller machine dimensions / bigger converter dimensions
- Smaller operating costs
- More cooling needed
- Approx. > 1% losses (based on converter power i.e. generator power)
- No phase reversal switches needed

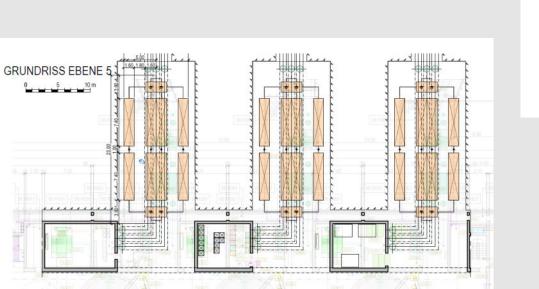

Double-fed asynchronous machine

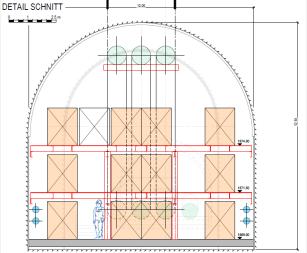
- Known technology
- Few suppliers
- Bigger machine dimensions / smaller converter dimensions
- Higher maintenance costs (Slip rings)
- Need less cooling
- 3% losses (based on converter power i.e. converter power approx. 24 MVA)


Electromechanical Aspects

Comparison of machine dimensions

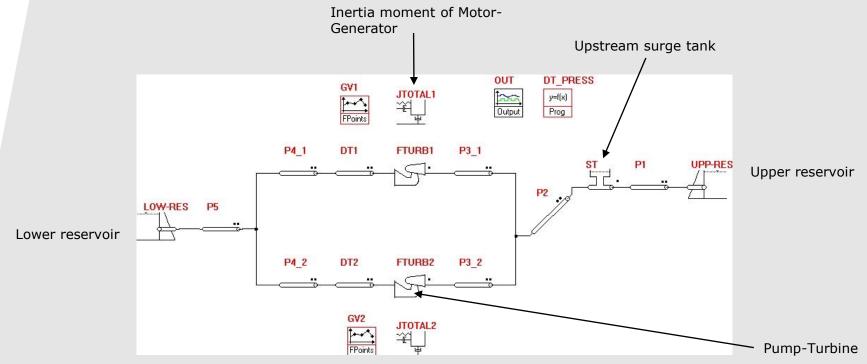
Electromechanical Aspects


Arrangement for Vario Speed with 24 MVA Converter (Asynchron Machine)



Electromechanical Aspects

Arrangement with Full Size Converter (Synchron Machine) for 230 MVA Units


Å

Magna and Baysh PSPP, Saudi Arabia

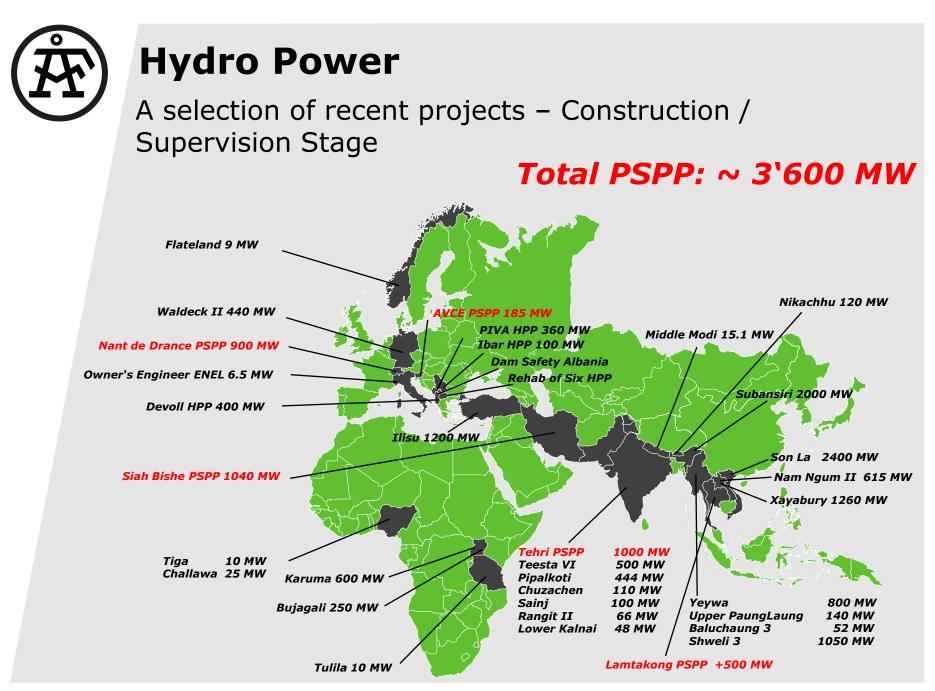
Electromechanical Aspects

Modeling of Layout (Transient Study with Simsen-Hydro-Software):

- Spiral case pressure
- Need/Dimension of Surge tank/Surge tank water oscillation
- Draft tube cone pressure/level of units (submergence)

Hydro Power

Our services and experience in Pumped Storage Power Plants (PSPP)

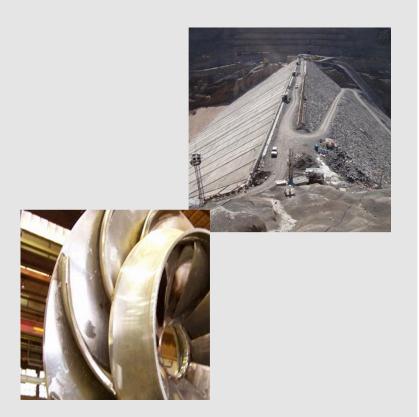

- Potential Studies
 - Example of Myanmar PSPP

Concept/Feasibility Studies

- Recent Projects
- Example: Magna and Baysh PSPP, Saudi-Arabia

Design and Construction

- Recent Projects
- Specific solutions for PH (BIM), intakes



Siah-Bishe PSPP, Iran

- 2003 2009
- 1'040 MW

- Tendering and Contracting Services
- Project Management/Design Review
- Management Control
- Design Review/Approval
- Transfer of Technology
- Construction Management Support

Siah-Bishe PSPP, Iran

- Upper Dam
 - CFRD
 - Height 85 m
 - Crest El. 2'410 m a s l
 - Dam volume 1.4 Mio. m3
 - Reservoir volume 3.5 Mio. m3
- Lower Dam
 - CFRD
 - Height 106.5 m
 - Crest El. 1'911.5 m a s l
 - Dam volume 4.93 Mio. m3
 - Reservoir volume 3.6 Mio. m3

Siah-Bishe PSPP, Iran

- Headrace tunnel: 2 x Ø 5.7 m; 2'015 m and 1'973 m
- Pressure shaft: 2 x Ø 5.0 m; 760 m
- Max. Gross Head: 520 m
- Number of Unit: 4 with total Capacity of 1'040 MW in underground powerhouse
- Type of Machine: 4 vertical Francis pump-turbine
- Rated flow turbine operation: 260 m3/s
- Rated flow pump operation: 200 m3/s

Tehri PSPP, India

- 2016 ongoing
- 1000 MW

- Detailed Design Review and Design Updates for the EPC Contractor
- Preparation Design Updates for
 - Powerhouse & busduct Tunnels
 - BVC and PAC Caverns
 - U/S & D/S Surge Shaft Chambers
 - U/S & D/S Surge Shafts
 - Bus bar Cavern
 - TRT Outfall Structures
 - Lower PAC
 - Ventilation Tunnels
 - Upper and Lower Penstock Tunnel/Shaft
- Preparation of TOR Model Studies
- Update of Geological & Geotechnical Reports & Mappings

Tehri PSPP, India

- Entire Scheme Underground, connecting two existing reservoirs
- Transformer Cavern shared with the associated 1000 MW conventional Hydropower Scheme
- Design Head: 188 m
- Rated Unit Capacity 250 MW
- Number of Unit: 4 with total Capacity of 1000 MW
- Type of Machine: Variable Speed, vertical
- Size of Power Cavern (LxWxH): 201 m x
 25.4 m x 57.3 m

Attaqa PSPP, Egypt

- 2017 ongoing
- 2′400 MW

- Owners Engineer
- Project management including project control of legal and finance of related technical aspects;
- Engineering review of EPC concept and detail design deliverables;
- Quality control, assurance services and supplier surveillance;
- Construction monitoring, supervision and management;
- Commissioning and start-up supervision.

Attaqa PSPP, Egypt

Key Characteristics:

- 6 x 400 MW reversible pump/turbine units for a total capacity of 2,400 MW;

- 600 m of gross head;
- Upper and Lower freshwater reservoirs with dams), each with a live storage volume of 7.3 Mio m³;
- 6 large diameter high pressure penstocks;
- Underground powerhouse;
- Underground surge chamber(s);
- A high voltage transmission line and substation;
- Upper and Lower intakes/outlet structures
- All associated mechanical equipment including gates, trash racks and valves.

Atdorf PSPP, Germany

- 2011 2018
- 1'400 MW

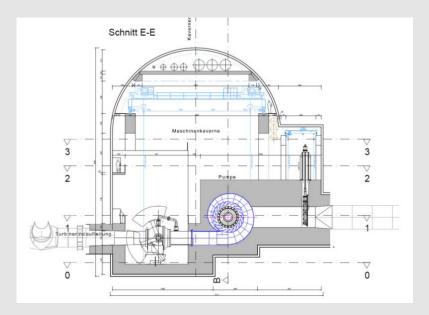
- Review of Feasibility and Basic Design
- Basic-, tender- and construction design
- Design review for main equipment
- Site engineering and management
- Site inspection and monitoring
- Shop inspection
- Tests & commissioning

Atdorf PSPP, Germany

- Dams: RCC Main Dam / 2 Retention Dams
- New Cavern
- New artificial Upper Reservoir
 with
 - 9 Mio m3 Volume
- New artificial Lower Reservoir
 with
 - 9 Mio m3 Volume
- Net Head: 620 m
- Number of Units: 6 with total Capacity of 1'400 MW
- Type of Machine: Variable Speed Asynchronous

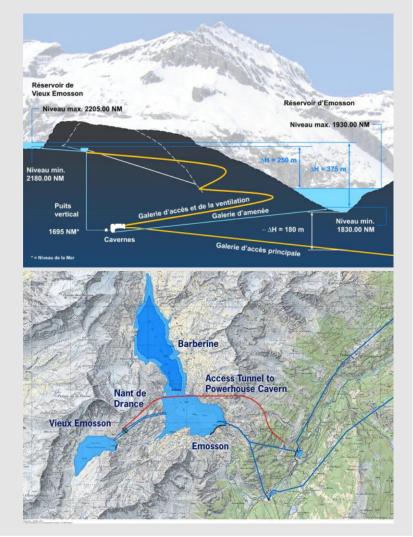
Koralm PSPP, Austria

- 2015 2022
- 940 MW (4 x 235 MW)

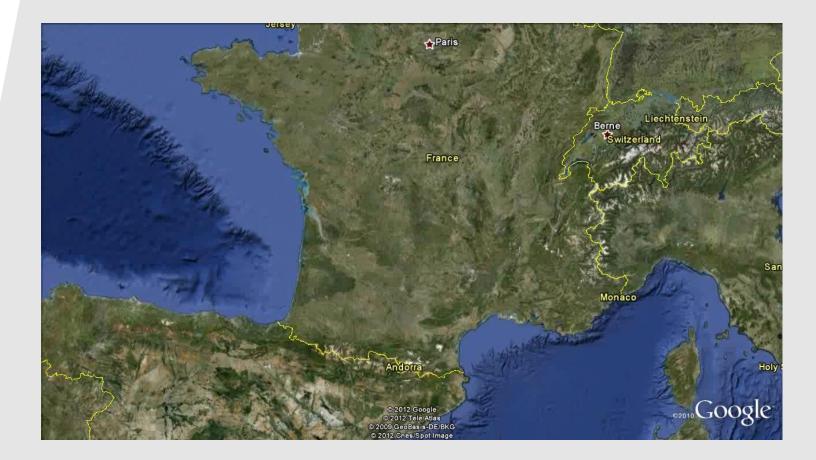

- Concept review
- Feasibility study
- Overall project management
- Basic, tender and construction design
- Design review for main equipment
- Site engineering and management
- Site inspection and monitoring
- Tests & commissioning

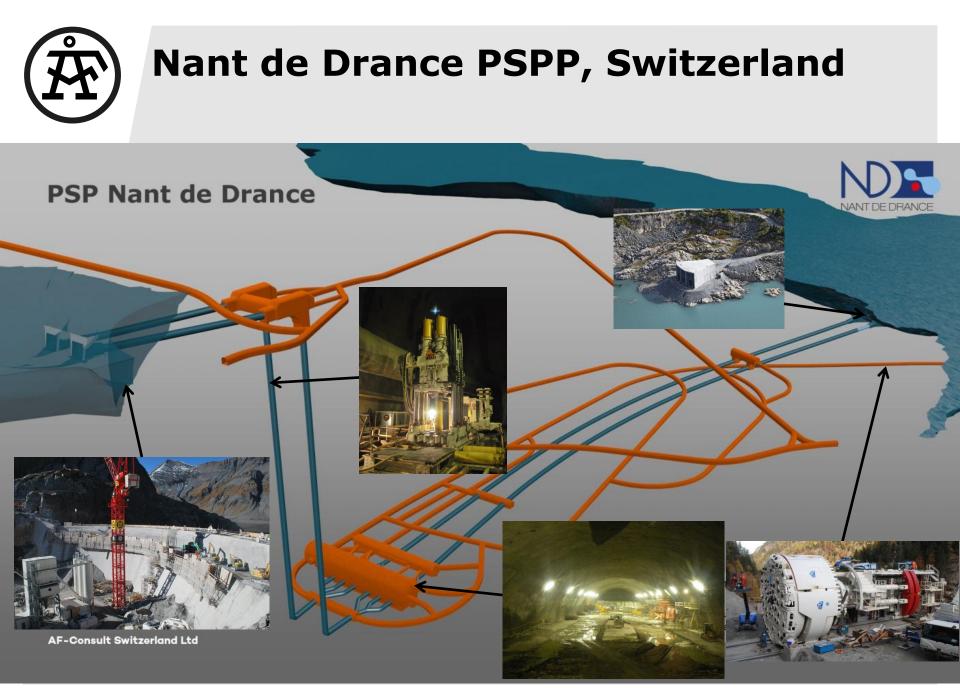
Koralm PSPP, Austria

- Upper reservoir
 - Capacity: 4.6 Mio. m³
 - Earth fill dam 87 m
 - Crest length 640 m
- Upper tunnel
 - Length 1'100 m, diameter 8.8 m
- Vertical shaft
 - Length 650 m, diameter 5.4 m
- Cavern powerhouse
- Type of Machine: 4 Ternary machine sets à 235 MW
- Lower tunnel
 - Length 3'900 m, diameter 7.0 m
- Lower reservoir
 - Capacity: 4.6 Mio. m³
- Max. Head: 653 m
- Rated flow per unit: 38.7 m³/s

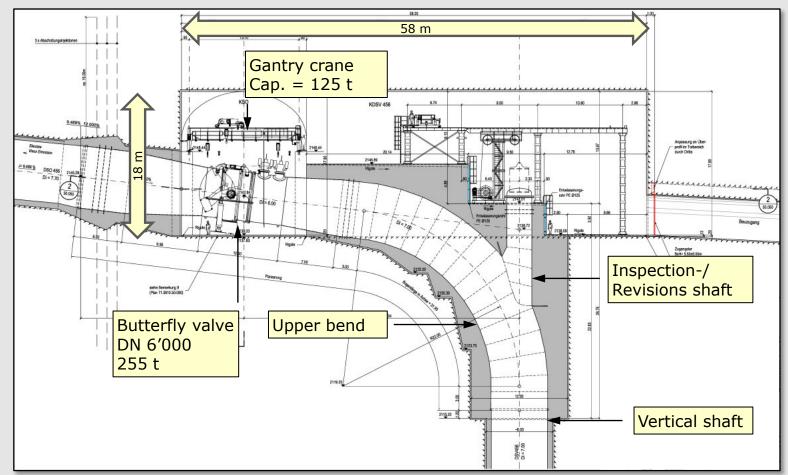

- 2005 ongoing
- 900 MW

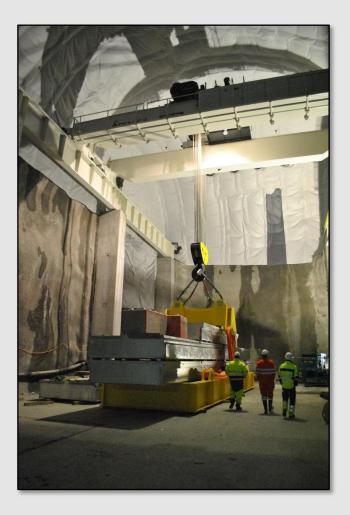
- Feasibility study
- Overall project management
- Basic, tender and construction design
- Design review for main equipment
- Site engineering and management
- Site inspection and monitoring
- Shop inspection
- Tests & commissioning





- Construction stage
- Dam: Arch Dams (existing)
- Dam height
 - Upstream: 20 m to be increased (64 m)
 - Downstream: 185 m (existing)
- Upstream reservoir capacity: 22 Mio. m3
- Max. Head: 390 m
- Number of Unit: 6 with total Capacity of 900 MW
- Type of Machine: Variable Speed Asynchronous
- Rated flow per unit: 60 m3/s




Main Structures – Upper Valve Chamber

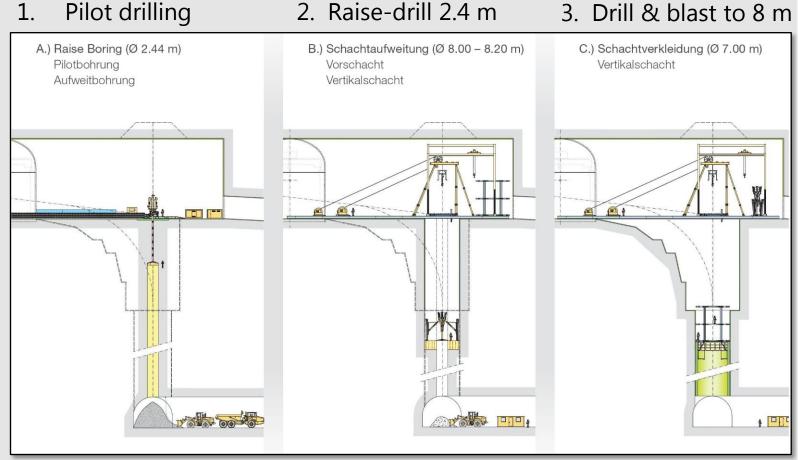
Longitudinal section upper valve chamber

Upper Valve Chamber

Upper valve chamber: L x B x H: 70 m x 16 x 18 m, V: ~ 20'000 m³ Hosts butterfly valves Design factor: Size of steel components

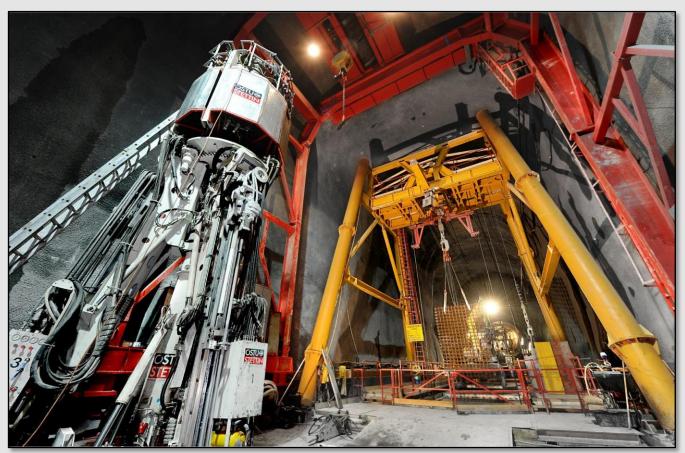
Vertical Shaft

- Height [m]: 444
- Inner diameter [m]: 7.0
- Average flow velocity [m/s]:

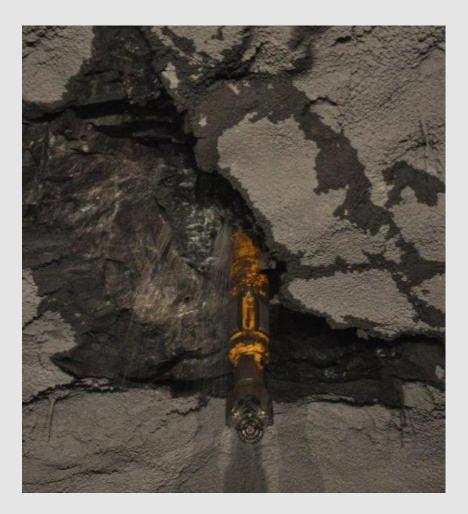


4.7

Widening of shaft

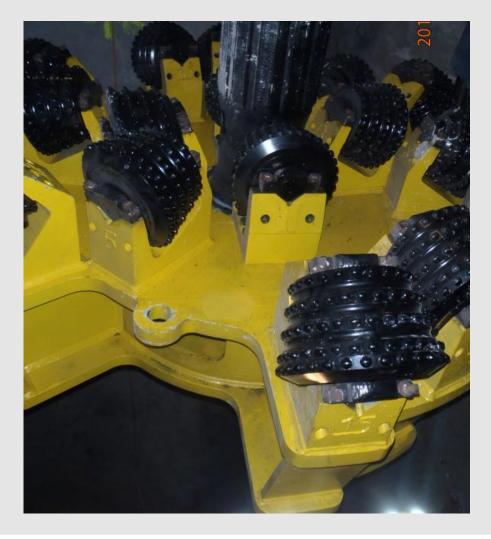

Vertical Shaft – Excavation method

Process description (Zmölnig, M. (2014): Vertical Shafts of Nant de Drance)


Vertical Shaft

Raise-boring-equipment (Stakne, P. et al. (2014): Alpine Experience of Shaft Construction and Shaft Grouting)

Vertical Shaft – Pilot drilling



Excavation method:

- 1. Pilot drilling
- 2. Raise-drill 2.4 m
- 3. Drill & blast to 8 m

Vertical Shaft – Raise-drill 2.4 m

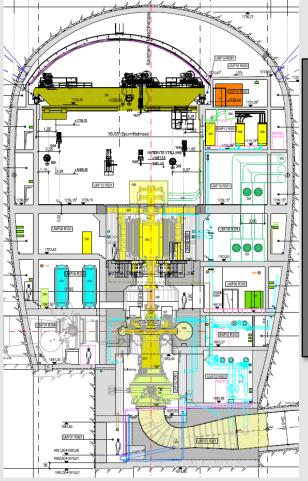
Excavation method:

- 1. Pilot drilling
- 2. Raise-drill 2.4 m
- 3. Drill & blast to 8 m

Powerhouse Cavern Design with BIM (Building Information Modelling)

Length [m]:	194
• Width [m]:	30.5
• Height [m]:	53
 Excavation volume [m³]: 	272′000

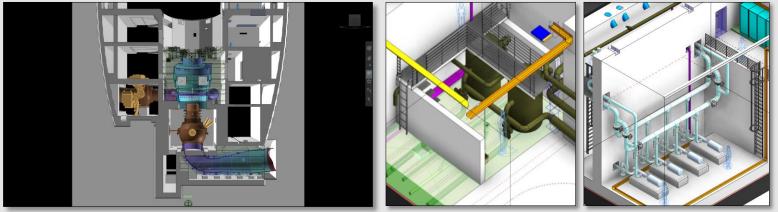
Excavation volume [m³]:


Powerhouse main floor (2016)

Concreting phase (2015)


Powerhouse Cavern

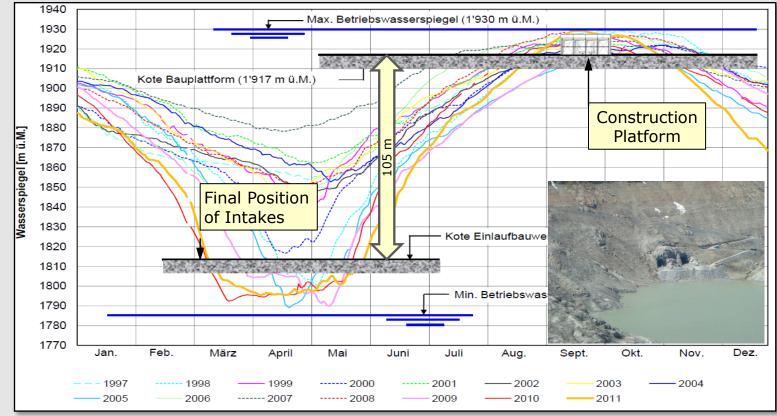
Powerhouse cavern: 6 vario-speed pump turbines 150 MW each L x B x H: 194 x 30.5 x 53 m



Powerhouse Cavern – 3D Modelling & Clash Detection (BIM)

Powerhouse & transformer caverns

Piping and ducting systems



Turbine pit

Pump sump

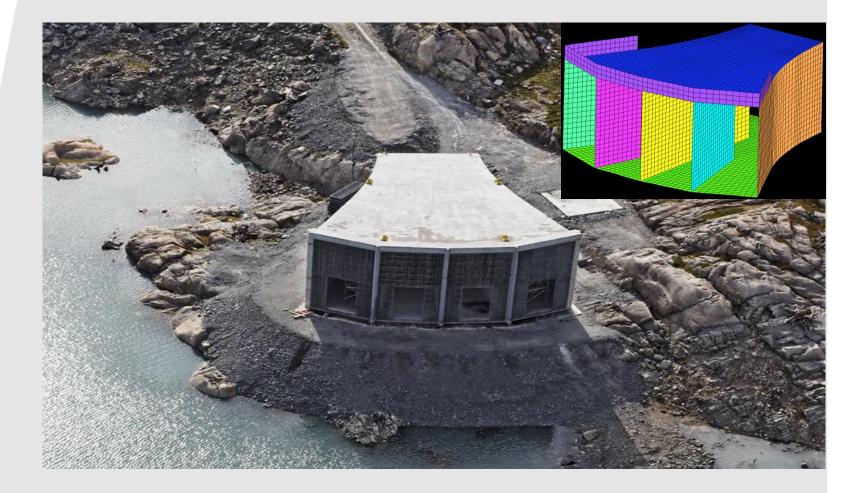
Construction of the Lower Intakes

Reservoir operation at Emosson (1997 - 2011)

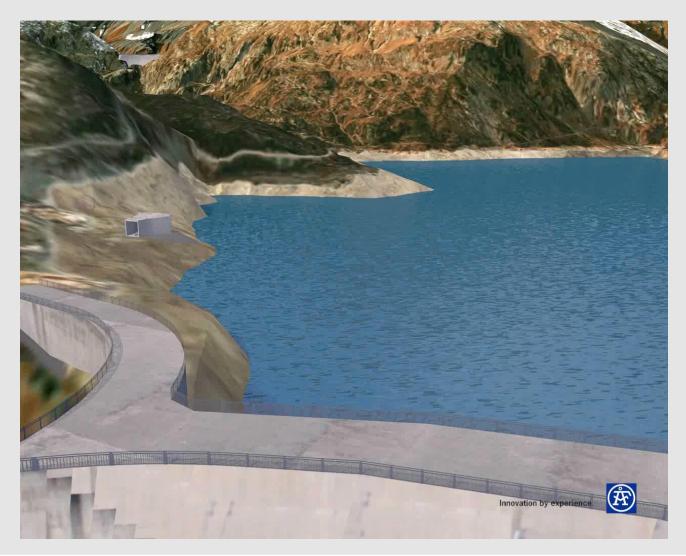
Construction of the Lower Intakes

Several Construction Methods were studied:

- In situ with fresh concrete or prefabricated concrete elements
- Construction on a platform and transport of the final intakes to their final position


Lower intake floated into its final position

Lower intakes – construction phase



Construction of the Lower Intakes

Placing the Lower Intakes

Hydro Power

Thank you and welcome to ÅF

ÅF, Hydro Power

Visiting Address: AF-Consult Switzerland Ltd.| Täfernstrasse 26 | CH-5405 Baden | Switzerland www.afconsult.com Visiting Address: AF-Consult India Pvt. Ltd. | Office No. 19, (GF) Tower-1, Stellar IT Park, Sector-62 | Noida | India www.afconsult.com

Self-Scheduling of Pumped-Storage Hydro Power Generation in Electric Power Markets

P. Kanakasabapathy Associate Professor

Department of Electrical Engineering

A multi campus university accredited by NAAC with 'A' grade

February 9, 2018

(日) (周) (王) (王)

- Pumped-Storage Power Plant & Competitive Electricity Market
- Regulatory Price Regime Vs Electricity Market Regime
- Objective and Scope of Pumped Storage Self-Scheduling

2 Self-Scheduling in Pool-Based Electricity Market

- Mathematical Model of Plant Operation
- Case Study-I: Optimization using Sequential Scheduling
- Case Study-II: Optimization using ETPSO

Self-Scheduling in Combined Pool-Bilateral Market

- 4 Market Uncertainty and Risk
- **(5)** Impact of Pumped-Storage on Market Social Welfare
 - Conclusions

Amrita Vishwa Vidyapeetham

ション ふゆ アメリア メリア しょうくしゃ

Pumped Storage Power Plant

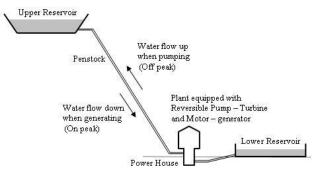


Figure: 1. Schematic Diagram of Pumped Storage Plant

イロト 不得下 イヨト イヨト

ъ

Sac

Pumped Storage Power Plant

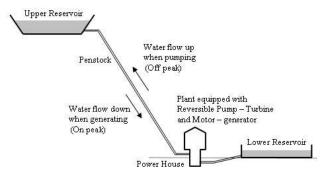


Figure: 1. Schematic Diagram of Pumped Storage Plant

- Large-scale energy storage technology
- Still in active operation because of its operational flexibility
- Provide rapid response to changes in system loading or spot price
- Take part in energy markets and ancillary services markets - 日本 不動 医 不良 医 一日 -

Amrita Vishwa Vidyapeetham

Reforms in Energy Sector

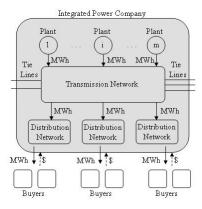


Figure: 2. Classical Power Systems

Sac

Reforms in Energy Sector

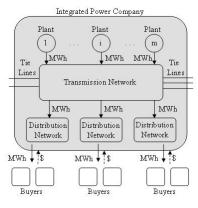


Figure: 2. Classical Power Systems

- Market based environment
- Competitive energy trading

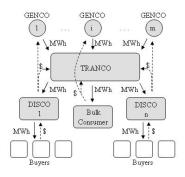


Figure: 3. Restructured Power Systems

Sac

Reforms in Energy Sector

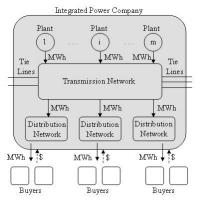
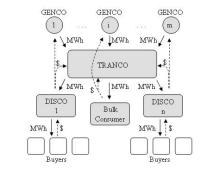



Figure: 2. Classical Power Systems

- Market based environment
- Competitive energy trading

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Open access of infrastructure and improved reliability of service
- Distinct energy and ancillary service products Additional sources of revenue Choice of market that returns the highest profit

Amrita Vishwa Vidyapeetham

```
3/ 38
```

Electricity Market Models

Bilateral Contracts Model

- Specific contracts between supplier and consumer
- Appropriate access and transmission pricing standards
- Transfer the traded power over transmission utility

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Electricity Market Models

Bilateral Contracts Model

- Specific contracts between supplier and consumer
- Appropriate access and transmission pricing standards
- Transfer the traded power over transmission utility

PoolCo Model

- Pool of producers and customers served by transmission system
- Competition among utilities to trade power
- Centralized market place (Px) clears the market and define the Market Clearing Price (MCP)

ション ふゆ マ キャット マックシン

Electricity Market Models

Bilateral Contracts Model

- Specific contracts between supplier and consumer
- Appropriate access and transmission pricing standards
- Transfer the traded power over transmission utility

Hybrid Model

- Combines the features of previous two market models
- Choice of bilateral contracts and power pool
- Power pool serve all buyers and sellers who choose to compete

ション ふゆ マ キャット マックシン

PoolCo Model

- Pool of producers and customers served by transmission system
- Competition among utilities to trade power
- Centralized market place (Px) clears the market and define the Market Clearing Price (MCP)

Electricity Market Models

Bilateral Contracts Model

- Specific contracts between supplier and consumer
- Appropriate access and transmission pricing standards
- Transfer the traded power over transmission utility

Hybrid Model

- Combines the features of previous two market models
- Choice of bilateral contracts and power pool
- Power pool serve all buyers and sellers who choose to compete

PoolCo Model

- Pool of producers and customers served by transmission system
- Competition among utilities to trade power
- Centralized market place (Px) clears the market and define the Market Clearing Price (MCP)

Types of Markets

- Day-ahead, Hour-ahead and Real Time Energy Markets
- Capacity based Ancillary Services Markets (TMSR, TMNSR, TMOR)
- Voltage regulation and reactive power support services

Pumped-Storage in Competitive Market

- Highly variable, cyclical grid demand as well as the energy price in electricity markets
- Growing reliance on intermittent renewable energy sources like wind and photo-voltaic generation
- Frequent situations of surplus power generation to cater the available load [Ontario Sep. 2006]

ション ふゆ ア キョン キョン しょうく

Pumped-Storage in Competitive Market

- Highly variable, cyclical grid demand as well as the energy price in electricity markets
- Growing reliance on intermittent renewable energy sources like wind and photo-voltaic generation
- Frequent situations of surplus power generation to cater the available load [Ontario - Sep. 2006]
- Market opportunities for energy storage systems better energy management in the fields of micro grids and distributed generation
- Ability to purchase low cost power whenever it is available and sell whenever there is high demand
- Pumped-storage can provide efficiently the ancillary grid services, such as reserve generation and network frequency control

Literature Review

Regulatory Price Regime

- All the units including pumped-storage are owned by single entity
- Pumped storage is scheduled to replace high cost (thermal/gas/diesel) energy during peak loads Hydro-thermal coordination
- Cost of the energy replaced Performance measure
- Marginal cost method & peak-shaving algorithm

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

Literature Review

Regulatory Price Regime

- All the units including pumped-storage are owned by single entity
- Pumped storage is scheduled to replace high cost (thermal/gas/diesel) energy during peak loads Hydro-thermal coordination
- Cost of the energy replaced Performance measure
- Marginal cost method & peak-shaving algorithm

Electricity Market Regime

- Optimal strategy towards maximizing the personal benefit for operating in a competitive environment
- Determination of the optimal bids for generation (MW) and corresponding price (\$/MW)
- Suitable time slot for storage plant to operate as generator and pump
- Profit maximization from energy and ancillary services markets

Literature Review

Strategic Bidding

- Based on forecasted MCP in the subsequent trading periods
- Based on estimations of bidding behaviour of rival participants
- Based on the game theory

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

Sac

Literature Review

Strategic Bidding

- Based on forecasted MCP in the subsequent trading periods
- Based on estimations of bidding behaviour of rival participants
- Based on the game theory

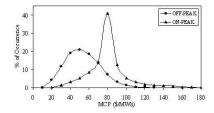


Figure: 4. Distributions of Day-ahead Hourly Market Clearing Price (MCP)

Motivation

- Distribution of MCP Exploitation of cyclic patterns of market price dynamics
- In a typical market, real time energy trading < 5%, and the remaining is traded in the bilateral contracts and the day-ahead energy market
- Strong incentives for pumped-storage to develop bidding strategy and optimize self-schedule for energy and ancillary services trades

Pumped Storage Self-Scheduling

Objectives

- Development of optimal bidding strategy day-ahead pool based and hybrid electricity markets
- Formulation of mathematical model and suitable algorithm to implement the strategy and maximize the profit
- Management of uncertainties and investigation of the impact of operating pumped-storage plants in the market social welfare

うして ふゆう ふほう ふほう ふしつ

Pumped Storage Self-Scheduling

Objectives

- Development of optimal bidding strategy day-ahead pool based and hybrid electricity markets
- Formulation of mathematical model and suitable algorithm to implement the strategy and maximize the profit
- Management of uncertainties and investigation of the impact of operating pumped-storage plants in the market social welfare

Scope

- Limited to independent pumped storage power plant, which is a price taker and do not possess any market power
- Study relies on forecasted MCP
- Only the reserve markets which are attractive for pumpedstorage are considered (TMSR, TMNSR and RFRR)
- Data representing specific plants & specific market Concepts and techniques developed could have general application

Concept of Marginal Cost

It is economical to make an offer of $\eta_p MWh$ generation during t_g hours, if there exists a time duration of t_p hours to bid for buying 1 MWh, such that the ratio of the MCPs during pumping and generating is less than the plant cycle efficiency η_p

200

Concept of Marginal Cost

It is economical to make an offer of $\eta_p MWh$ generation during t_g hours, if there exists a time duration of t_p hours to bid for buying 1 MWh, such that the ratio of the MCPs during pumping and generating is less than the plant cycle efficiency η_p

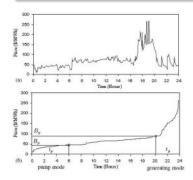


Figure: 5. Market Clearing Price curve. (a) Daily MCP, (b) Composite MCP

Amrita Vishwa Vidyapeetham

イロト イポト イヨト イヨト

Concept of Marginal Cost

It is economical to make an offer of $\eta_p MWh$ generation during t_g hours, if there exists a time duration of t_p hours to bid for buying 1 MWh, such that the ratio of the MCPs during pumping and generating is less than the plant cycle efficiency η_p

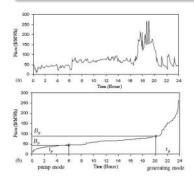


Figure: 5. Market Clearing Price curve. (a) Daily MCP, (b) Composite MCP

Economic Constraint

$$B_g \ge \frac{B_p}{\eta_p} \cong B_g \ge 1.5 \ B_p \quad (1)$$

イロト イポト イヨト イヨト

Sac

Amrita Vishwa Vidyapeetham

Concept of Marginal Cost

It is economical to make an offer of $\eta_p MWh$ generation during t_g hours, if there exists a time duration of t_p hours to bid for buying 1 MWh, such that the ratio of the MCPs during pumping and generating is less than the plant cycle efficiency η_p

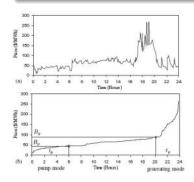


Figure: 5. Market Clearing Price curve. (a) Daily MCP, (b) Composite MCP

Economic Constraint

$$B_g \ge \frac{B_p}{\eta_p} \cong B_g \ge 1.5 \ B_p \quad (1)$$

Operating Time Constraint

$$t_{pmax} = \frac{T - (E_{in}/P_g)}{1 + \eta_p \left(P_p/P_g\right)}$$
(2)

Making energy balance, t_g for any given t_p can be estimated

Amrita Vishwa Vidyapeetham

▲ロト ▲理ト ▲ヨト ▲ヨト → ヨー のへの

Mathematical Model

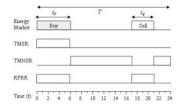
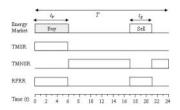



Figure: 8. Bidding space diagram for energy and ancillary services

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

∃ \0 < \0</p>

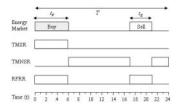
Mathematical Model

Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market

Revenue from energy trading during the generating mode

$$\mathbf{P} = \sum_{i=1}^{t_g} P_g(i) B_g(i)$$


(3)

3

Sac

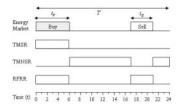
・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Mathematical Model

$$\mathbf{P} = \sum_{i=1}^{t_g} P_g(i) B_g(i) + \sum_{j=1}^{t_p} P_{rs}(j) B_{rs}(j)$$

Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market


Revenue from energy trading during the generating mode

Syn-Reserve Market

Revenue by reducing pumping power during the pumping mode (3)

3

Mathematical Model

$$\mathbf{P} = \sum_{i=1}^{t_g} P_g(i) B_g(i) + \sum_{j=1}^{t_p} P_{rs}(j) B_{rs}(j) + \sum_{k=1}^{(T-t_p-t_g)} P_g(k) B_{rn}(k)$$

Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market

Revenue from energy trading during the generating mode

Syn-Reserve Market

Revenue by reducing pumping power during the pumping mode

Non-syn Res. Market

(3)

Revenue from non-syn reserve bids when the unit is off-line

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Amrita Vishwa Vidyapeetham

Mathematical Model

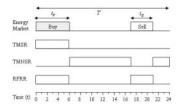


Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market

Revenue from energy trading during the generating mode

Energy Market

Payment for energy procurement during the pumping mode

Syn-Reserve Market

Revenue by reducing pumping power during the pumping mode

$$\mathbf{P} = \sum_{i=1}^{t_g} P_g(i) B_g(i) + \sum_{j=1}^{t_p} P_{rs}(j) B_{rs}(j) + \sum_{k=1}^{(T-t_p-t_g)} P_g(k) B_{rn}(k) - \sum_{m=1}^{t_p} P_p(m) B_p(m)$$

(3)

Sac

Non-syn Res. Market

Revenue from non-syn reserve bids when the unit is off-line

Amrita Vishwa Vidyapeetham

Р

Mathematical Model

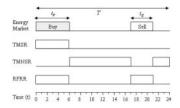


Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market

Revenue from energy trading during the generating mode

Energy Market

Payment for energy procurement during the pumping mode

Syn-Reserve Market

Revenue by reducing pumping power during the pumping mode

Operating Cost

Running expenditure during pumping and generating $(t_p + t_g)$

$$= \sum_{i=1}^{t_g} P_g(i) B_g(i) + \sum_{j=1}^{t_p} P_{rs}(j) B_{rs}(j) + \sum_{k=1}^{(T-t_p-t_g)} P_g(k) B_{rn}(k) - \sum_{m=1}^{t_p} P_p(m) B_p(m) - \sum_{n=1}^{(t_g+t_p)} C_o(n)$$

Non-syn Res. Market

(3)

Revenue from non-syn reserve bids when the unit is off-line

Amrita Vishwa Vidyapeetham

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Р

Mathematical Model

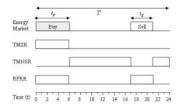


Figure: 8. Bidding space diagram for energy and ancillary services

Energy Market

Revenue from energy trading during the generating mode

Energy Market

Payment for energy procurement during the pumping mode

Syn-Reserve Market

Revenue by reducing pumping power during the pumping mode

Operating Cost

Running expenditure during pumping and generating $(t_p + t_g)$

$$= \sum_{i=1}^{t_g} P_g(i) B_g(i) + \sum_{j=1}^{t_p} P_{rs}(j) B_{rs}(j) + \sum_{k=1}^{(T-t_p-t_g)} P_g(k) B_{rn}(k) - \sum_{m=1}^{t_p} P_p(m) B_p(m) - \sum_{n=1}^{(t_g+t_p)} C_o(n) - C_m$$

(3)

Non-syn Res. Market

Revenue from non-syn reserve bids when the unit is off-line

Fixed Cost

Fixed expenditures including maintenance for the total period T

Amrita Vishwa Vidyapeetham

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lewiston-Niagara Pumped Storage Plant New York Power Authority

Plant Data

Capacity = $200 - 300 \ MW$, $P_p = 250 \ MW$, $\eta_p = 0.6667$

・ロト ・ 西ト ・ ヨト ・ 日 ・

∃ <200</p>

Lewiston-Niagara Pumped Storage Plant New York Power Authority

Plant Data

Capacity = 200 - 300 MW, $P_p = 250 MW$, $\eta_p = 0.6667$

Reservoir Data

Head = 20 - 30 m, $E_{min} = 100 MWh$, $E_{max} = 1500 MWh$, $E_0 = 100 MWh$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

Lewiston-Niagara Pumped Storage Plant New York Power Authority

Plant Data

Capacity = 200 - 300 MW, $P_p = 250 MW$, $\eta_p = 0.6667$

Reservoir Data

Head = $20 - 30 \ m, \ E_{min} = 100 \ MWh$, $E_{max} = 1500 \ MWh$, $E_0 = 100 \ MWh$

Market Data

Price Forecasts: NYISO MCP of New York Central region, Reserve Market Prices: $B_{rs} = 6 \ MWh$ and $B_{rn} = 0.5 \ MWh$

500

Lewiston-Niagara Pumped Storage Plant New York Power Authority

Plant Data

Capacity = 200 - 300 MW, $P_p = 250 MW$, $\eta_p = 0.6667$

Reservoir Data

 $Head = 20 - 30 \ m, \ E_{min} = 100 \ MWh, \\ E_{max} = 1500 \ MWh, \ E_0 = 100 \ MWh$

Market Data

Price Forecasts: NYISO MCP of New York Central region, Reserve Market Prices: $B_{rs} = 6 \ MWh$ and $B_{rn} = 0.5 \ MWh$

Daily operating strategy

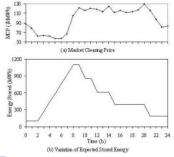


Figure: 9. Expected energy storage

Lewiston-Niagara Pumped Storage Plant New York Power Authority

Plant Data

Capacity = 200 - 300 MW, $P_p = 250 MW$, $\eta_p = 0.6667$

Reservoir Data

Head = $20 - 30 \ m, \ E_{min} = 100 \ MWh$, $E_{max} = 1500 \ MWh$, $E_0 = 100 \ MWh$

Market Data

Price Forecasts: NYISO MCP of New York Central region, Reserve Market Prices: $B_{rs} = 6 \ MWh$ and

 $B_{rn} = 0.5 \ \$/MWh$

Daily operating strategy

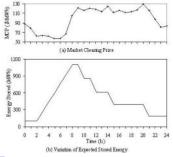
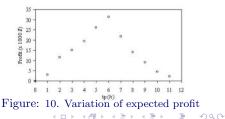



Figure: 9. Expected energy storage

Amrita Vishwa Vidyapeetham

11/ 38

Daily Operating Strategy

Table: I. Optimal bidding strategy and bids in MW (4-10 May 2008)

Hr		D	ays	of the	e we	ek				and the second	Days	of the	week	ek		
m	S	M	T	W	T	F	S	Hr	S	M	T	W	T	F	S	
1	-1	0	0	0	0	0	0	1	-250	0	0	0	0	0	0	
2	-1	0	0	-1	0	0	-1	2	-250	0	0	-250	0	0	-250	
3	-1	-1	0	~1	-1	-1	-1	3	-250	-250	0	-250	-250	-250	-250	
4	-1	-1	-1	-1	-1	-1	-1	4	-250	-250	-250	-250	-250	-250	-250	
5	-1	-1	-1	-1	-1	-1	-1	5	-250	-250	-250	-250	-250	-250	-250	
6	-1	-1	-1	0	-1	-1	0	6	-250	-250	-250	0	-250	-250	0	
7	0	-1	-1	0	0	0	0	7	0	-250	-250	0	0	0	0	
8	0	-1	0	0	0	0	0	8	0	-250	0	0	0	0	0	
9	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	
10	0	1	0	0	0	0	0	10	0	250	0	0	0	0	0	
11	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	
12	1	1	0	0	0	0	0	12	250	240	0	0	0	0	0	
13	1	0	0	1	1	0	0	13	240	0	0	230	230	0	0	
14	1	0	0	0	1	0	1	14	220	0	0	0	220	0	230	
15	0	1	0	0	0	0	0	15	0	220	0	0	0	0	0	
16	0	0	0	1	0	1	1	16	0	0	0	220	0	230	220	
17	0	0	0	0	0	1	1	17	0	0	0	0	0	220	210	
18	0	0	1	0	0	1	0	18	0	0	230	0	0	210	0	
19	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0	
20	0	0	1	0	0	0	0	20	0	0	220	0	0	0	0	
21	1	1	1	1	1	0	0	21	210	210	210	210	210	0	0	
22	0	0	0	0	0	Ū	0	22	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	

- '-' sign indicates pumping
- '+' sign indicates generating

Amrita Vishwa Vidyapeetham

0 230 0

220 210 0

0

0 0 0

Daily Operating Strategy

Table: I. Optimal bidding strategy and bids in MW (4-10 May 2008)

		D	avs r	of the	e wie	ek					Dave	of the	week	
łr	S	M	T	W	T	F	S	Hr	S	M	T	W	T	F
1	-1	0	0	0	0	0	0		-250	0	0	0	0	0
2	-1	0	0	-1	0	0	-1	2	-250	0	0	-250	0	0
3	-1	-1	0	-1	1	-1	-1	3	-250	-250	0	-250	-250	-250
4	-1	-1	-1	-1	-1	-1	-1	4	-250	-250	-250	-250	-250	-250
5	-1	-1	-1	-1	-1	-1	-1	5	-250	-250	-250	-250	-250	-250
6	-1	-1	-1	0	-1	-1	0	6	-250	-250	-250	0	-250	-250
7	0	-1	-1	0	0	0	0	1 7	0	-250	-250	0	0	0
8	0	-1	0	0	0	0	0	8	0	-250	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	10	0	250	0	0	0	0
1	0	0	0	0	0	0	0	11	0	0	0	0	0	0
2	1	1	0	0	0	0	0	12	250	240	0	0	0	0
3	1	0	0	1	1	0	0	13	240	0	0	230	230	0
4	1	0	0	0	1	0	1	14	220	0	0	0	220	0
15	0	1	0	0	0	0	0	15	0	220	0	0	0	0
6	0	0	0	1	0	1	1	16	0	0	0	220	0	230
7	0	0	0	0	0	1	1	17	0	0	0	0	0	220
8	0	0	1	0	0	1	0	18	0	0	230	0	0	210
19	0	0	0	0	0	0	0	19	0	0	0	0	0	0
20	0	0	1	0	0	0	0	20	0	0	220	0	0	0
21	1	1	1	1	1	0	0	21	210	210	210	210	210	0
22	0	0	0	0	0	0	0	22	0	0	0	0	0	0
23	0	0	0	0	0	0	0	23	0	0	0	0	0	0
24	0	0	0	0	0	0	0	24	0	0	0	0	0	0

- '-' sign indicates pumping
- '+' sign indicates generating

Amrita Vishwa Vidyapeetham

	/ 38	
--	------	--

12

Table: II. Result summary: 4-10 May 2008

Day	$\begin{pmatrix} t_p \\ (h) \end{pmatrix}$	$\begin{pmatrix} t_g\\(h) \end{pmatrix}$	Profit (\$)	E_s^{max} (MWh)
Sun	6	4	45615	1100
Mon	6	4	31261	1100
Tues	4	3	20299	770
Wed	4	3	30063	770
Thu	4	3	19607	770
Fri	4	3	21109	770
Sat	4	3	28159	770
Total	32	23	196113	-

- Plant generates more during peak MCP period and pumps more when MCP is low
- Energy balance is maintained at the end of each day
- Energy storage capacity limit is not violated

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

Weekly Operating Strategy

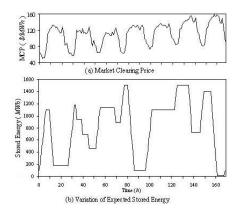


Figure: 11. Expected energy storage

Amrita Vishwa Vidyapeetham

・ロト ・ 同ト ・ ヨト

nac

∃ →

Weekly Operating Strategy

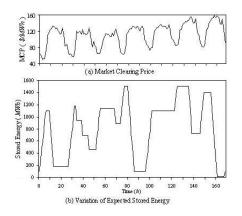
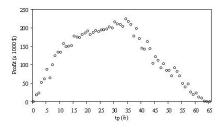



Figure: 11. Expected energy storage

Figure: 12. Variation of expected profit

- Plant generates more on the later part of week and pumps more on early part of the week
- Energy balance is maintained only at the end of the week

Amrita Vishwa Vidyapeetham

Weekly Operating Strategy

Table: III. Optimal bidding strategy and bids in MW (4-10 May 2008)

		D	avs (of the	e we	ek				015772	Davs	of the	week		0.00
Hr	S	M	T	W	T	F	S	Hr	S	M	T	W	T	F	Ś
1	-1	0	0	0	-1	0	0	1	-250	0	0	0	-250	0	0
2	-1	0	0	-1	-1	0	-1	2	-250	0	0	-250	-250	0	-250
3	-1	-1	0	-1	-1	-1	-1	3	-250	-250	0	-250	-250	-250	-250
4	-1	-1	-1	-1	-1	-1	-1	4	-250	-250	-250	-250	-250	-250	-250
5	-1	-1	-1	-1	-1	-1	-1	5	-250	-250	-250	-250	-250	-250	-250
6	-1	-1	-1	0	-1	0	0	6	-250	-250	-250	0	-250	0	0
7	0	-1	-1	0	0	0	0	7	0	-250	-250	0	0	0	0
8	0	-1	0	0	0	0	0	8	0	-250	0	0	0	0	0
9	0	0	0	1	0	0	0	9	0	0	0	270	0	0	0
10	1	1	0	1	0	0	0	10	250	250	0	260	0	0	0
11	1	0	0	1	0	0	0	11	240	0	0	240	0	0	0
12	1	0	0	1	0	0	1	12	220	0	0	230	0	0	260
13	1	0	0	1	0	0	1	13	210	0	0	220	0	0	250
14	0	0	0	1	0	0	1	14	0	0	0	200	0	0	240
15	0	1	0	0	0	0	1	15	0	240	0	0	0	0	230
16	0	0	0	0	0	1	1	16	0	0	0	0	0	270	210
17	0	0	0	0	0	1	1	17	0	0	0	0	0	260	200
18	0	0	0	0	0	1	0	18	0	0	0	0	0	240	0
19	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0
21	0	1	1	0	0	0	0	21	0	230	250	0	0	0	0
22	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	-1	24	0	0	0	0	0	0	-140

- '-' sign indicates pumping
- '+' sign indicates generating

Weekly Operating Strategy

Table: III. Optimal bidding strategy and bids in MW (4-10 May 2008)

Hr		D	avs a	of the	e we	ek				0.572	Davs	of the	week			
Hr	S	M	T	W	T	F	S	Hr	S	M	T	W	T	F	Ś	
1	-1	0	0	0	-1	0	0	1	-250	0	0	0	-250	0	0	
2	-1	0	0	-1	-1	0	-1	2	-250	0	0	-250	-250	0	-250	
3	-1	-1	0	-1	-1	-1	-1	3	-250	-250	0	-250	-250	-250	-250	
4	-1	-1	-1	-1	-1	-1	-1	4	-250	-250	-250	-250	-250	-250	-250	
5	-1	-1	-1	-1	-1	-1	-1	5	-250	-250	-250	-250	-250	-250	-250	
6	-1	-1	-1	0	-1	0	0	6	-250	-250	-250	0	-250	0	0	
7	0	-1	-1	0	0	0	0	7	0	-250	-250	0	0	0	0	
8	0	-1	0	0	0	0	0	8	0	-250	0	0	0	0	0	
9	0	0	0	1	0	0	0	9	0	0	0	270	0	0	0	
10	1	1	0	1	0	0	0	10	250	250	0	260	0	0	0	
11	1	0	0	1	0	0	0	11	240	0	0	240	0	0	0	
12	1	0	0	1	0	0	1	12	220	0	0	230	0	0	260	
13	1	0	0	1	0	0	1	13	210	0	0	220	0	0	250	
14	0	0	0	1	0	0	1	14	0	0	0	200	0	0	240	
15	0	1	0	0	Û	0	1	15	0	240	0	0	0	0	230	
16	0	0	0	0	0	1	1	16	0	0	0	0	0	270	210	
17	0	0	0	0	0	1	1	17	0	0	0	0	0	260	200	
18	0	0	0	0	0	1	0	18	0	0	0	0	0	240	0	
19	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	
21	0	1	1	0	0	0	0	21	0	230	250	0	0	0	0	
22	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	-1	24	0	0	0	0	0	0	-140	

Table: IV. Summary of results: Daily and Weekly operating strategies (4-10 May 2008)

Pumping power P_p kept constant at 250 MW

Strgy.	$\begin{pmatrix} t_p \\ (h) \end{pmatrix}$	$\begin{pmatrix} t_g \\ (h) \end{pmatrix}$	P_g^{av} (MW)	Profit (\$)
Daily	32	23	223.48	196113
Weekly	34	23	237.83	224036

$E_{s}^{max} : -$	Daily:1100	Weekly:1500 MWh
$P_g^{max} : -$	Daily: 250	Weekly: 270 MW

- '-' sign indicates pumping
- '+' sign indicates generating

Amrita Vishwa Vidyapeetham

Weekly Operating Strategy

Table: III. Optimal bidding strategy and bids in MW (4-10 May 2008)

		D	avs (of the	e we	ek			Days of the week						
Hr	S	M	T	W	T	F	S	Hr	S	M	T	W	T	F	Ś
1	-1	0	0	0	-1	0	0	1	-250	0	0	0	-250	0	0
2	-1	0	0	-1	-1	0	-1	2	-250	0	0	-250	-250	0	-250
3	-1	-1	0	-1	-1	-1	-1	3	-250	-250	0	-250	-250	-250	-250
-4	-1	-1	-1	-1	-1	-1	-1	4	-250	-250	-250	-250	-250	-250	-250
5	-1	-1	-1	-1	-1	-1	-1	5	-250	-250	-250	-250	-250	-250	-250
6	-1	-1	-1	0	-1	0	0	6	-250	-250	-250	0	-250	0	0
7	0	-1	-1	0	0	0	0	7	0	-250	-250	0	0	0	0
8	0	-1	0	0	0	0	0	8	0	-250	0	0	0	0	0
9	0	0	0	1	0	0	0	9	0	0	0	270	0	0	0
10	1	1	0	1	0	0	0	10	250	250	0	260	0	0	0
11	1	0	0	1	0	0	0	11	240	0	0	240	0	0	0
12	1	0	0	1	0	0	1	12	220	0	0	230	0	0	260
13	1	0	0	1	0	0	1	13	210	0	0	220	0	0	250
14	0	0	0	1	0	0	1	14	0	0	0	200	0	0	240
15	0	1	0	0	Û	0	1	15	0	240	0	0	0	0	230
16	0	0	0	0	0	1	1	16	0	0	0	0	0	270	210
17	0	0	0	0	0	1	1	17	0	0	0	0	0	260	200
18	0	0	0	0	0	1	0	18	0	0	0	0	0	240	0
19	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0
21	0	1	1	0	0	0	0	21	0	230	250	0	0	0	0
22	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	-1	24	0	0	0	0	0	0	-140

- '-' sign indicates pumping
- '+' sign indicates generating

Table: IV. Summary of results: Daily and Weekly operating strategies (4-10 May 2008)

Pumping power P_p kept constant at 250 MW

Strgy.	$\begin{pmatrix} t_p \\ (h) \end{pmatrix}$	$\begin{pmatrix} t_g \\ (h) \end{pmatrix}$	P_g^{av} (MW)	Profit (\$)
Daily	32	23	223.48	196113
Weekly	34	23	237.83	224036

$E_{s}^{max} : -$	Daily:1100	Weekly:1500 MWh
$P_g^{max} : -$	Daily: 250	Weekly: 270 MW

Table: V. Comparison of bidding strategies

Strategy	$\begin{pmatrix} t_p \\ (h) \end{pmatrix}$	$\begin{pmatrix} t_g \\ (h) \end{pmatrix}$	Profit (\$)
Trad. operation	42	28	177805
Fixed schedule	42	28	211143
Const. power bid	34	23	215140
Proposed strgy.	34	23	224036

Amrita Vishwa Vidyapeetham

Comparison and Observations

Power bids in weekly operating mode are greater than daily operating mode

- Maintains high water head over the week days
- Efficiently utilizes the reservoir capacity since energy balance is satisfied only at the end of the week

・ロト ・ 一下・ ・ ヨト・

-

Comparison and Observations

Power bids in weekly operating mode are greater than daily operating mode

- Maintains high water head over the week days
- Efficiently utilizes the reservoir capacity since energy balance is satisfied only at the end of the week

Maximum energy stored in upper reservoir in respect of daily operating mode is comparatively less

- Reservoir energy balance is maintained every day
- Whatever energy stored is evacuated in the same day

・ロト ・ 一下・ ・ ヨト・

Comparison and Observations

Power bids in weekly operating mode are greater than daily operating mode

- Maintains high water head over the week days
- Efficiently utilizes the reservoir capacity since energy balance is satisfied only at the end of the week

Maximum energy stored in upper reservoir in respect of daily operating mode is comparatively less

- Reservoir energy balance is maintained every day
- Whatever energy stored is evacuated in the same day

The pumping and generating time of daily operating mode are less

- Margin between the MCP of energy bids during pumping and generating modes should be economically maintained
- In weekly operating mode the MCP variations and the price margin are high when compared to the daily operating mode

- 日本 - 4 日本 - 4 日本 - 日本

Comparison and Observations

Power bids in weekly operating mode are greater than daily operating mode

- Maintains high water head over the week days
- Efficiently utilizes the reservoir capacity since energy balance is satisfied only at the end of the week

Maximum energy stored in upper reservoir in respect of daily operating mode is comparatively less

- Reservoir energy balance is maintained every day
- Whatever energy stored is evacuated in the same day

The pumping and generating time of daily operating mode are less

- Margin between the MCP of energy bids during pumping and generating modes should be economically maintained
- In weekly operating mode the MCP variations and the price margin are high when compared to the daily operating mode

More profit in weekly operating mode

- Energy prices in the beginning of the week are lower than the later part
- Water stored during the beginning of the week is retained and used later

Blenheim-Gilboa Pumped Storage Project New York Power Authority

Plant Data

 $\begin{aligned} \text{Capacity} &= 4 * 260 \ MW, \\ P_p &= 250 \ MW, \ \eta_p = 0.6667 \end{aligned}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Blenheim-Gilboa Pumped Storage Project New York Power Authority

Plant Data

 $\begin{aligned} \text{Capacity} &= 4*260 \ MW,\\ P_p &= 250 \ MW, \ \eta_p &= 0.6667 \end{aligned}$

Reservoir Data

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Blenheim-Gilboa Pumped Storage Project New York Power Authority

Plant Data

 $\begin{aligned} \text{Capacity} &= 4*260 \ MW,\\ P_p &= 250 \ MW, \ \eta_p &= 0.6667 \end{aligned}$

Reservoir Data

$$\begin{split} \text{Head} &= 300 - 330 \ m, \\ E_{min} &= 1000 \ MWh, \\ E_{max} &= 8000 \ MWh, \ E_0 &= 1000 \ MWh \end{split}$$

Market Data

Price Forecasts: NYISO MCP of New York Central region, Reserve Market Prices: $B_{rs} = 6 \ MWh \ B_{rn} = 0.5 \ MWh$

ション ふゆ マ キャット キャット しょう

Blenheim-Gilboa Pumped Storage Project New York Power Authority

Plant Data

Capacity = 4 * 260 MW, $P_p = 250 MW$, $\eta_p = 0.6667$

Reservoir Data

$$\begin{split} \text{Head} &= 300 - 330 \ m, \\ E_{min} &= 1000 \ MWh, \\ E_{max} &= 8000 \ MWh, \ E_0 &= 1000 \ MWh \end{split}$$

Market Data

Price Forecasts: NYISO MCP of New York Central region, Reserve Market Prices: $B_{rs} = 6 \ MWh \ B_{rn} = 0.5 \ MWh$

ETPSO-Convergence characteristics

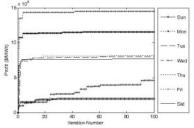


Figure: 16. Daily operating Mode

200

Amrita Vishwa Vidyapeetham

Blenheim-Gilboa Pumped Storage Project New York Power Authority

Plant Data

 $\begin{aligned} \text{Capacity} &= 4*260 \ MW,\\ P_p &= 250 \ MW, \ \eta_p &= 0.6667 \end{aligned}$

Reservoir Data

$$\begin{split} \text{Head} &= 300 - 330 \ m, \\ E_{min} &= 1000 \ MWh, \\ E_{max} &= 8000 \ MWh, \ E_0 &= 1000 \ MWh \end{split}$$

Market Data

 $\begin{array}{l} \mbox{Price Forecasts: NYISO} \\ \mbox{MCP of New York Central region,} \\ \mbox{Reserve Market Prices:} \\ \mbox{B}_{rs} = 6 \ \$/MWh \ B_{rn} = 0.5 \ \$/MWh \end{array}$

ETPSO-Convergence characteristics

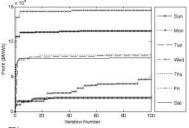
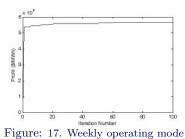
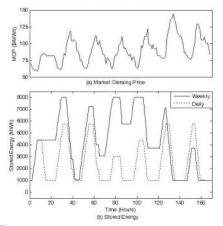



Figure: 16. Daily operating Mode

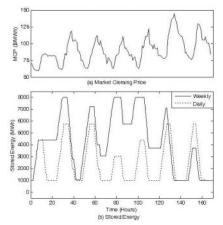

(日) (雪) (日) (日) (日)

Amrita Vishwa Vidyapeetham

16/ 38

SAC

Results and Discussion


Amrita Vishwa Vidyapeetham

<ロト <四ト <注入 < モト

Sac

Þ

Results and Discussion

Figure: 18. Energy storage with respect to time

Table: VI. Optimal bidding schedule (22-28 June 2008)

Hour	1	2	3	4	6	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Day								(A) D	aily	Op	era	ating) M	ode	9								
Sun	0	0	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
Mon	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	0	1	1	0	0	0	0	0	0
Tue	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	0	1	1	0	0	0	0	0	0
Wed	0	0	0	-1	-1	-1	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
Thu	0	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Fri	-1	-1	-1	-1	-1	-1	-1	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Sat	0	-1	-1	-1	-1	-1	-1	-1	0	0	1	1	1	1	1	0	0	0	1	0	0	0	0	0
					_		(B) V	Nee	ekly	Op	bera	ating	g M	lode	9					_			
Sun	0	0	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mon	-1	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	1	0	1	1	0	0	0	0	-1	-1
Tue	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	-1	-1
Wed	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	-1	-1
Thu	-1	-1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Fri	0	-1	-1	-1	-1	-1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Sat	0	0	0	-1	-1	-1	-1	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0

- '-' sign indicates pumping
- '+' sign indicates generating

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Results and Discussion

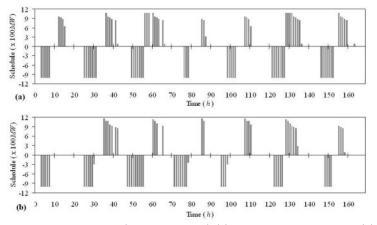


Figure: 19. Optimal power bids (22-28 June 2008) (a) Daily operating strategy, (b) Weekly operating strategy

Amrita Vishwa Vidyapeetham

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Comparison of Results

- Two operating schedules: Daily and weekly
- Effective reservoir utilization in weekly scheduling
- ETPSO: Stochastic method statistical evaluation
- Performance of ETPSO is compared with other evolutionary techniques
- Explores optimal time slots for self-scheduling
- With increased problem dimensionality, ETPSO gives comparatively faster solution

Comparison of Results

- Two operating schedules: Daily and weekly
- Effective reservoir utilization in weekly scheduling
- ETPSO: Stochastic method statistical evaluation
- Performance of ETPSO is compared with other evolutionary techniques
- Explores optimal time slots for self-scheduling
- With increased problem dimensionality, ETPSO gives comparatively faster solution

Table: VII. Performance of sequential and ETPSO methodologies

S - Schedule; D - Daily; W - Weekly Pumping power P_p kept constant at 250 MW

	t_p	t_{g}	P_a^{av}	Expec.	Exe.			
S	(\dot{h})	(\tilde{h})	$(M^{g}W)$	Profit(\$)	time(s)			
PSO								
D	42	35	202.46	565254	9.78			
W	44	29	237.92	575299	709.45			
Genetic Algorithm (GA)								
D	42	35	200.38	565260	7.12			
W	43	29	236.37	575311	517.34			
Sequential Methodology (SM)								
D	42	35	203.93	565246	1.08			
W	45	30	239.67	575276	533.94			
Proposed ETPSO								
D	41	35	199.14	565268	4.44			
W	42	28	235.71	575376	350.86			

Amrita Vishwa Vidyapeetham

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hybrid Market Model

- Combines the features of pool-based market and the bilateral contracts
- End-users have flexibility to purchase from either the pool or directly from the suppliers by exercising bilateral contracts

ション ふゆ マ キャット キャット しょう

Hybrid Market Model

- Combines the features of pool-based market and the bilateral contracts
- End-users have flexibility to purchase from either the pool or directly from the suppliers by exercising bilateral contracts

Energy Market Sub-problem

Includes trading of power, both in bilateral contract and competitive market

$$\sum_{t \in T} B(t) P(t) =$$

$$\sum_{i=1}^{t_g^b} P_g^b(i) B_g^b(i) - \sum_{j=1}^{t_p^b} P_p^b(j) B_p^b(j) + \sum_{m=1}^{t_g^p} P_g(m) B_g(m) - \sum_{n=1}^{t_p^p} P_p(n) B_p(n)$$
(4)

Where,

Contract power during generating mode = $P_a^b(t) \forall t \in T$

Contract power during pumping mode = $P_n^b(t) \ \forall \ t \in T$

Amrita Vishwa Vidyapeetham

Case Study

- Two cases, varying bilateral contract period are considered
- Case-I : $t_p^b = t_g^b$ and $P_g^b = \frac{2}{3}P_p^b$
- Case-II: $t_g^b = \frac{2}{3} t_p^b$ and $P_g^b = P_p^b$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

Case Study

- Two cases, varying bilateral contract period are considered
- Case-I : $t_p^b = t_g^b$ and $P_g^b = \frac{2}{3}P_p^b$
- Case-II: $t_g^b = \frac{2}{3}t_p^b$ and $P_g^b = P_p^b$

Table: VIII. Details of Agreed Bilateral Contract

Mode	hrs	$\operatorname{Slot}_{\operatorname{number}}$	$\begin{array}{c} \text{Power} \\ (MW) \end{array}$	Rate (\$)								
Case-I												
Pump Gen	3 3	3, 4, 5 18, 19, 20	$250 \\ 160$	47 89								
Case-II												
Pump Gen	3 2	3, 4, 5 18, 19	250 230	47 93								

Amrita Vishwa Vidyapeetham

▲ロト ▲園ト ▲ヨト ▲ヨト 三百 - のへで

Case Study

- Two cases, varying bilateral contract period are considered
- Case-I : $t_p^b = t_g^b$ and $P_g^b = \frac{2}{3}P_p^b$
- Case-II: $t_g^b = \frac{2}{3}t_p^b$ and $P_g^b = P_p^b$

Table: VIII. Details of Agreed Bilateral Contract

Mode	hrs	$\operatorname{Slot}_{\operatorname{number}}$	$\begin{array}{c} \text{Power} \\ (MW) \end{array}$	Rate (\$)
		Case-I		
Pump Gen	3 3	3, 4, 5 18, 19, 20	$250 \\ 160$	47 89
		Case-II		
Pump Gen	3 2	3, 4, 5 18, 19	250 230	47 93

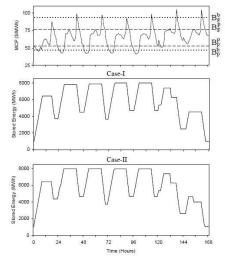


Figure: 21. Variation of Stored Energy with Respect to MCP over the Time

Amrita Vishwa Vidyapeetham

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ ● ●

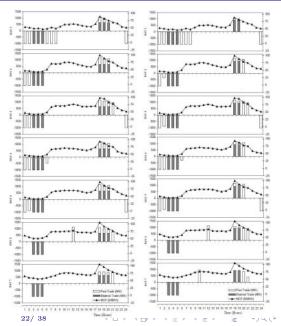
Case Study

Table: IX. Optimal Bidding Strategy: Combined Pool-Bilateral Market, Case-I and Case-II

											Car	ie I												
Hours	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Day 1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	-1
Day 2	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 3	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	-1
Day 4	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 5	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	-1
Day 6	0	0	-1	-1	-1	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
			-1	-1	11	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
Day 7	0	0	-1		-									-	-	-	-	-						
Day 7	0	0	-1		-						Cas			-	-	-		-						
Hours	1	2	3	4	5	6	7	8	9	10	Cas 11	e II 12	13	14	15				_	20	21	-		
Hours	1	_	_	4	5	6	7	8	9	10	Cas 11 0	е II 12 0	13 0	14	0	0	0	1	1	0	0	0	0	24
Hours	1	2	3	4	5	6	7	8	9	10	Cas 11	e II 12	13	14					_			-		
Hours Day 1 Day 2	1	2	3	4	5	6	7	8	9	10	Cas 11 0	е II 12 0	13 0	14	0	0	0	1	1	0	0	0	0	-1
Hours Day 1 Day 2 Day 3	1	2	3	4	5	6 -1 0	7	8 -1 0	9 0 0	10 0 0	Cas 11 0	e II 12 0	13 0 0	14 0	0	0	0	1	1	0	0	0	0	-1 0 -1
Hours Day 1 Day 2 Day 3 Day 4	1 -1 -1	2	3	4	5 -1 -1 -1	6 -1 0	7	8 -1 0	9 0 0	10 0 0	Cas 11 0 0	e II 12 0 0	13 0 0	14 0 0	0 0 0	0	0 0 0	1 1	1 1 1	01	0 0 1	0	0 0 0	1070
Hours Day 1	1 -1 -1 -1	2	3	4 -1 -1 -1	5 -1 -1 -1 -1	6 -1 0 -1	7 -1 0 0	8 -1 0 0	9 0 0 0	10 0 0 0	Cas 11 0 0 0	e II 12 0 0 0	13 0 0 0	14 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1	1 1 1	0 1 1	0 0 1	0 0 0 0	0 0 0	-1

ション ふゆ ア キョン キョン しょうく

Case Study


Table: IX. Optimal Bidding Strategy: Combined Pool-Bilateral Market, Case-I and Case-II

											Ca	ie I												
Hours	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Day 1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	-1
Day 2	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 3	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	-1
Day 4	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 5	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	-1
Day 6	0	0	-1	-1	-1	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
Day 7	0	0	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0

											Cas	e II												
Hours	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Day 1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	-1
Day 2	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 3	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	-1
Day 4	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
Day 5	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	-3
Day 6	0	0	-1	-1	-1	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
Day 7	0	0	-1	-t	-1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0

Figure: 22. Optimal Power Bids and Offers for Case-I and Case-II

Amrita Vishwa Vidyapeetham

Comparison and Observations

Table: X. Result Summary: Plant Operating Time

Pun	nping	Time ((hrs)	Gen Time (hrs)						
t_p^b	t_p^p	$t_p^p = t_p^{p*} = t_p$			t_g^p	t_g^{p*}	t_g			
	Poo	ol Marl	ket Tr	ading	[Ning	Lu]				
-	35	-	35	-	22	-	22			
Co	ombin	ed Poc	l-Bila	teral l	Marke	t: Case	e-I			
21	17	0	38	21	24	4	25			
Co	Combined Pool-Bilateral Market: Case-II									
21	17	0	38	14	23	11	25			

 $t_p^{p^*}$ and $t_g^{p^*}$ indicate respective time periods excluding the time period overlapped with bilateral contracts

Case-II provides more flexibility for the operator to trade in the pool market

ション ふゆ ア キョン キョン しょうく

Comparison and Observations

Table: X. Result Summary: Plant Operating Time

Pun	nping	Time ((hrs)	Gen Time (hrs)						
t_p^b	t_p^p	t_p^{p*}	t_p	t_g^b	t_g^p	t_g^{p*}	t_g			
	Poo	ol Marl	ket Tr	ading	[Ning	Lu]				
-	35	-	35	-	22	-	22			
Co	ombin	ed Poc	ol-Bila	teral l	Marke	t: Case	ə-I			
21	17	0	38	21	24	4	25			
Co	Combined Pool-Bilateral Market: Case-II									
21	17	0	38	14	23	11	25			

 $t_p^{p^*}$ and $t_g^{p^*}$ indicate respective time periods excluding the time period overlapped with bilateral contracts

Case-II provides more flexibility for the operator to trade in the pool market

Table: XI. Economic Comparison of Combined Pool-bilateral Market

Revenues in \$

Category	Pool	Hybrid Market						
catogory	Market	Case-I	Case-II					
Bilateral	-	209160	210840					
Pool	443473	243611	285024					
Syn Res	210000	224100	218400					
Non-syn	59940	55965	56790					
Total	713413	732836	771054					

Profits from various energy and ancillary service market sources

Case-II has proven profitable due to high degree of liberty

Amrita Vishwa Vidyapeetham

23/ 38

▲ロト ▲園ト ▲ヨト ▲ヨト 三百 - のへで

Major uncertainties affecting pumped-storage self-scheduling

- Uncertainty of energy market price forecast
- **②** Uncertainty of power delivery request from ancillary services markets

ション ふゆ ア キョン キョン しょうく

Major uncertainties affecting pumped-storage self-scheduling

- Uncertainty of energy market price forecast
- ² Uncertainty of power delivery request from ancillary services markets

Uncertainty of MCP forecast

- Characterized by the variances of MCP of Energy and reserve markets.
- Self-scheduling problem is formulated by recognizing a measure of risk by introducing a rick tolerance factor β
- Impact of risk penalty factors on expected profit is investigated

Major uncertainties affecting pumped-storage self-scheduling

- Uncertainty of energy market price forecast
- 2 Uncertainty of power delivery request from ancillary services markets

Uncertainty of MCP forecast

- Characterized by the variances of MCP of Energy and reserve markets.
- Self-scheduling problem is formulated by recognizing a measure of risk by introducing a rick tolerance factor β
- Impact of risk penalty factors on expected profit is investigated

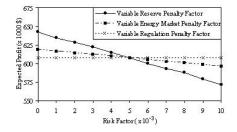
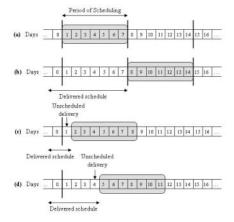


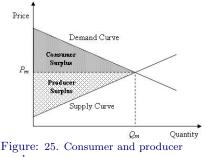
Figure: 23. Expected profit on variable risk factors


Uncertainty of ancillary services power delivery request

- Successive self-scheduling using the sliding window technique to adjust the operation schedule of pumped-storage plant
- Dynamic updation of self-scheduling problem
- Considering the modified upper reservoir storage due to the delivered ancillary services in the previous day and the forecast of the day-ahead markets
- Updated before the beginning of a new day for next consecutive days of the scheduling period, i.e. for next 168 h

Market Uncertainty and Risk

Uncertainty of ancillary services power delivery request


- Successive self-scheduling using the sliding window technique to adjust the operation schedule of pumped-storage plant
- Dynamic updation of self-scheduling problem
- Considering the modified upper reservoir storage due to the delivered ancillary services in the previous day and the forecast of the day-ahead markets
- Updated before the beginning of a new day for next consecutive days of the scheduling period, i.e. for next 168 h

▲ロト ▲理ト ▲ヨト ▲ヨト → ヨー のへの

Concept of social welfare

surplus

- Producers able to supply at lower cost than the MCP P_m
- Consumers willing to pay more than the actual MCP
- Amount of trade above the marginal cost

Amrita Vishwa Vidyapeetham

・ロット (雪) (日) (日)

3

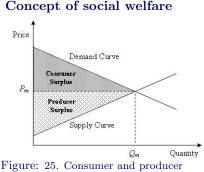


Figure: 25. Consumer and producer surplus

- Producers able to supply at lower cost than the MCP P_m
- Consumers willing to pay more than the actual MCP
- Amount of trade above the marginal cost

Amrita Vishwa Vidyapeetham

Residual Demand / Supply

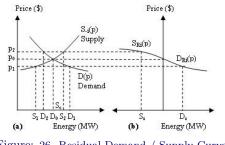


Figure: 26. Residual Demand / Supply Curve

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

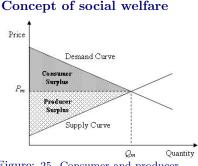


Figure: 25. Consumer and producer surplus

- Producers able to supply at lower cost than the MCP ${\cal P}_m$
- Consumers willing to pay more than the actual MCP
- Amount of trade above the marginal cost

Amrita Vishwa Vidyapeetham

Residual Demand / Supply

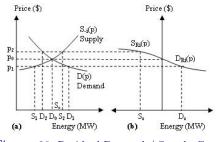
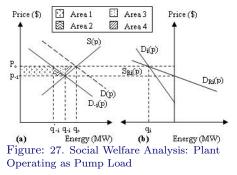


Figure: 26. Residual Demand / Supply Curve

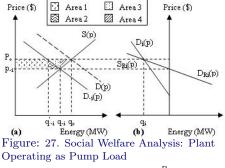

Residual demand facing the generator

$$D_{Ri}(p_i) = \sum_{j=1, j \neq i}^{n} (D_j(p_j) - S_j(p_j))$$
 (5)

Residual supply facing the pump load

26/ 38

Plant Operating as Pump Load

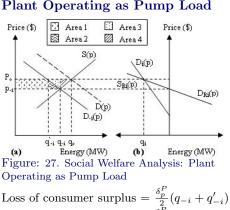


イロト イポト イヨト イヨト

Sac

ъ

Plant Operating as Pump Load



Loss of consumer surplus $=\frac{\delta_p^P}{2}(q_{-i}+q'_{-i})$ Gain of producer surplus $=\frac{\delta_p^P}{2}(q_0+q_{-i})$ Increase in social welfare $=\frac{\delta_p^P}{2}(q_0-q'_{-i})$ where $\delta_p^P = (p_0-p_{-i})$ \$.

Amrita Vishwa Vidyapeetham

・ロト ・ 一下・ ・ ヨト・

3

Gain of producer surplus $= \frac{\delta_p^P}{2}(q_0 + q_{-i})$ Increase in social welfare $= \frac{\delta_p^P}{2}(q_0 - q'_{-i})$ where $\delta_p^P = (p_0 - p_{-i})$ \$.

Plant Operating as Generator

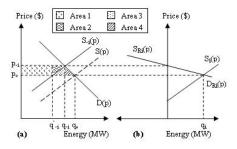
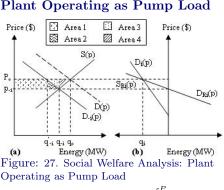



Figure: 28. Social Welfare Analysis: Plant Operating as Generator

Amrita Vishwa Vidyapeetham

Loss of consumer surplus $=\frac{\delta_p^P}{2}(q_{-i}+q'_{-i})$ Gain of producer surplus $=\frac{\delta_p^P}{2}(q_0+q_{-i})$ Increase in social welfare $=\frac{\delta_p^P}{2}(q_0-q'_{-i})$ where $\delta_p^P = (p_0-p_{-i})$ \$.

Plant Operating as Generator

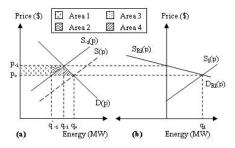


Figure: 28. Social Welfare Analysis: Plant Operating as Generator

Loss of producer surplus $=\frac{\delta_p^G}{2}(q_{-i}+q'_{-i})$ Gain of consumer surplus $=\frac{\delta_p^G}{2}(q_0+q_{-i})$ Increase in social welfare $=\frac{\delta_p^G}{2}(q_0-q'_{-i})$ where $\delta_p^G = (p_{-i}-p_0)$ \$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Impact on Social Welfare of Market

- Pumping mode: Increase in producer surplus, decrease in consumer surplus, i.e. Benefits producers at the expense of consumers
- Generating mode: Increase in consumer surplus, decrease in producer surplus, i.e. benefits consumers at the expense of producers

ション ふゆ マ キャット マックシン

Impact on Social Welfare of Market

- Pumping mode: Increase in producer surplus, decrease in consumer surplus, i.e. Benefits producers at the expense of consumers
- Generating mode: Increase in consumer surplus, decrease in producer surplus, i.e. benefits consumers at the expense of producers
- Pumping and generating mode: Increase net industry welfare
- Introduces more competition in the market, increase market social welfare by redistributing the resources across time
- Stabilize the energy prices and reduce the MCP swing over the time

Case Study

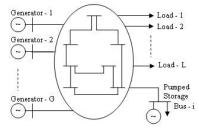


Figure: 29. Electricity Market with Pumped Storage Hydro-Power Plant

イロト 不得下 イヨト イヨト

э

Case Study

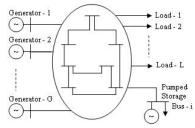


Figure: 29. Electricity Market with Pumped Storage Hydro-Power Plant

System Data

IEEE 118 Bus Test System

No. of dispatchable generators	:	53	
No. of dispatchable loads	:	32	
No. of non-dispatchable loads	:	66	
No. of pumped storage plants	:	01	
On-line generation capacity	:	9470	MW
Fixed Load (Non-dispatchable)	:	3051	MW
Pumped storage plant capacity	:	1000	MW

イロト 不得下 イヨト イヨト

ъ

Case Study

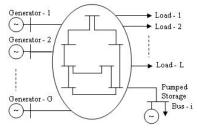


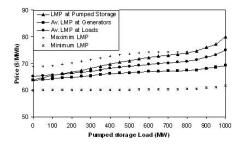
Figure: 29. Electricity Market with Pumped Storage Hydro-Power Plant

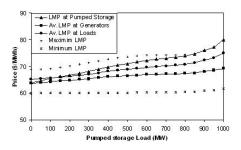
System Data

IEEE 118 Bus Test System	
No. of dispatchable generators	: 53
No. of dispatchable loads	: 32
No. of non-dispatchable loads	: 66
No. of pumped storage plants	: 01
On-line generation capacity	: 9470 MW
Fixed Load (Non-dispatchable)	: 3051 MW
Pumped storage plant capacity	: 1000 MW

- Market auction clearing mechanism take set of offers and bids in blocks
- These blocks converted into corresponding generator capacities and costs
- OPF solution for clearing the market and find generator allocations, loads to be dispatched along with nodal prices
- Uniform pricing equal to LAO is followed for computation of nodal prices

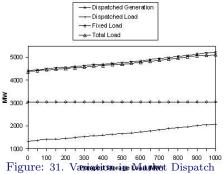
Pumped Storage Plant Operating as Pump Load




Figure: 30. Variation in LMP

- LMP increases as the pumped storage load increases
- Bus-66 LMP move towards maximum and reaches maximum when the pump load = 850 MW

Amrita Vishwa Vidyapeetham


イロト 不得下 イヨト イヨト

Pumped Storage Plant Operating as Pump Load

- LMP increases as the pumped storage load increases
- Bus-66 LMP move towards maximum and reaches maximum when the pump load = 850 MW

- Rate of increase in market dispatch is less than that of pump load
- Consumers have negative impact that a fraction of thier dispatch is taken by pumped storage now

Amrita Vishwa Vidyapeetham

Pumped Storage Plant Operating as Generator

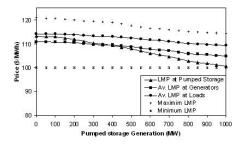
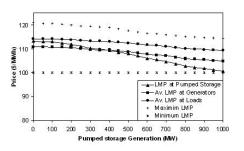
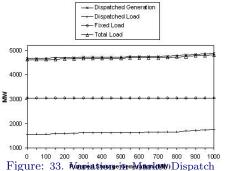



Figure: 32. Variation in LMP

- LMP decreases as the pumped storage plant generation increases
- Bus-66 LMP move towards minimum and at one stage, reaches minimum among all the system buses

Amrita Vishwa Vidyapeetham


イロト イポト イヨト イヨト

Pumped Storage Plant Operating as Generator

- LMP decreases as the pumped storage plant generation increases
- Bus-66 LMP move towards minimum and at one stage, reaches minimum among all the system buses

- Rate of increase in market dispatch is less than pumped storage supply
- Consumers have positive impact due to the transfer of surplus from producers to consumers

Amrita Vishwa Vidyapeetham

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへの

Net Increase in Social Welfare

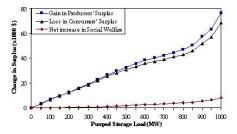


Figure: 34. Variation in producers and consumers surplus along with net increase in social welfare during pumping mode

- Transfer of surplus from consumers to producers
- Producers will have a positive impact
- Other consumers will have negative impact

Amrita Vishwa Vidyapeetham

イロト イポト イヨト イヨト

Net Increase in Social Welfare

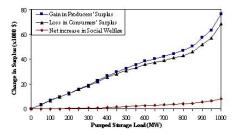


Figure: 34. Variation in producers and consumers surplus along with net increase in social welfare during pumping mode

- Transfer of surplus from consumers to producers
- Producers will have a positive impact
- Other consumers will have negative impact

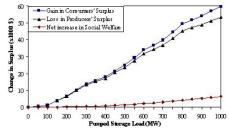


Figure: 35. Variation in producers and consumers surplus along with net increase in social welfare during generating mode

- Transfer of surplus from producers to consumers
- Consumers will have a positive impact
- Other suppliers will have negative impact

Amrita Vishwa Vidyapeetham

32/38

<ロ> <個> <注> <注> 二注:

Profit of Pumped Storage Plant

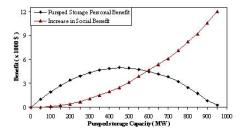
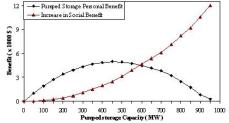



Figure: 36. Variation in pumped-storage personal benifit and market social benifit

- When plant is operated as pump and as generator for an hour each
- Net increase in social benefits corresponding to the personal benefit of pumped-storage plant

Amrita Vishwa Vidyapeetham

Profit of Pumped Storage Plant

40 (\$)dv 20

Figure: 36. Variation in pumped-storage personal benifit and market social benifit

- When plant is operated as pump and as generator for an hour each
- Net increase in social benefits corresponding to the personal benefit of pumped-storage plant

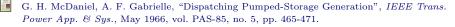
Figure: 37. Variation of difference in MCP between pumping and generating mode

- MCP swing $\Delta_p = \delta_p^P + \delta_f + \delta_p^G$
- Pumped storage energy trade stabilizes the price swing in the market over the time

Amrita Vishwa Vidyapeetham

10 200 Pumped Storage Trade (MW)

Market Price Stabilization


- Bidding strategy for pumped-storage plant to determine it's optimal self-schedule and trade in an electricity market is developed
- ETPSO based optimization algorithm which is adaptive for the variation in water head on generation level is developed
- Validation of the proposed strategy on realistic pumped-storage power plants has proven attractive

ション ふゆ ア キョン キョン しょうく

- Bidding strategy for pumped-storage plant to determine it's optimal self-schedule and trade in an electricity market is developed
- ETPSO based optimization algorithm which is adaptive for the variation in water head on generation level is developed
- Validation of the proposed strategy on realistic pumped-storage power plants has proven attractive
- Uncertainty management The probabilistic MCP forecast is handled with trade-off between expected profit and risk, and uncertain ancillary services delivery request is addressed using the dynamic self-scheduling approach
- Inference on energy market shows that pumped-storage energy trade increases the net social welfare and stabilizes the market price dynamics

References

Ontario Power Generation Reports: Third Quarter Financial Results - 2006. News from Ontario Power Generation Inc, Toronto, Nov. 2006. (Available online - www.opg.com)

- A. K. David and F. S. Wen, Strategic bidding in competitive electricity markets: A literature survey. *In Proc. IEEE Power Engineering Society Summer Meeting*, Apr. 2000, vol. 4, pp. 2168-2173.
- R. Deb, "Operating Hydroelectric Plants and Pumped-Storage Units in a Competitive Environment", *The Electricity Journal*, vol. 13, no. 3, pp. 24-32.
 - N. Lu, J. H. Chow, and A. A. Desrochers, "Pumped-Storage Hydro-Turbine Bidding Strategies in a Competitive Electricity Market", *IEEE Transactions on Power Systems*, May 2004, vol. 19, no. 2, pp. 834-841.
- A. I. Cohen, and S. H. Wan, "An Algorithm for Scheduling a Large Pumped-Storage Plant", *IEEE Trans. Power App. & Sys.*, Aug. 1985, vol. PAS-104, no. 8, pp. 2099-2104.
- R. W. de Mello, "Locational marginal pricing in practice, The New York experience", *IEEE Power Engineering Society General Meeting-2006*, pp. 1-4.
 - New York Independent System Operator Website. Available online: http://www.nyiso.com/public/market_data/pricing_data.jsp.
 - J. Kennedy and R. Eberhart, "Particle swarm optimization", *Proc. IEEE Int. Conf. Neural Networks*, Dec. 1995, vol. 4, pp. 1942-1948.

Amrita Vishwa Vidyapeetham

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Journals

- P. Kanakasabapathy and K. Shanti Swarup, "Evolutionary Tri-state PSO for Strategic Bidding of Pumped-Storage Hydro Electric Plant", *IEEE Transactions on Systems, Man* and Cybernetics, Part C: Applications and Reviews, July. 2010, vol. 40, no. 4, pp. 460-471.
- P. Kanakasabapathy and K. Shanti Swarup, "Bidding Strategies for Pumped-Storage Plant in Pool-Based Electricity Market", *Energy Conversion and Management, Elsevier*, Mar. 2010, vol. 51, no. 3, pp. 572-579.
- P. Kanakasabapathy and K. Shanti Swarup, "Three-Tier Market Model for Restructuring Indian Power Sector", Journal of Institution of Engineers (India) - EL, Mar. 2009, vol. 89, pp. 36-39.
- P. Kanakasabapathy and K. Shanti Swarup, "Market Operations in Future Indian Restructured Power System Scenario", International Journal of Energy Technology and Policy, Feb. 2009, vol.7, No.1, pp.78-94.

ション ふゆ マ キャット マックシン

Conferences

- P. Kanakasabapathy and K. Shanti Swarup, "Pumped-Storage Bidding and its Impacts in Combined Pool-Bilateral Market", International Conference on Power Systems (ICPS-2009), IIT Kharagpur, India, 27-29, Dec. 2009.
- P. Kanakasabapathy and K. Shanti Swarup, "Impact of Pumped Storage in Ancillary Services Market of Restructured Power Systems", National Conference on Advances in Energy Conversion Technologies (AECT 2009), MIT Manipal, India, 2-4, Apr. 2009.
- P. Kanakasabapathy and K. Shanti Swarup, "Impact of Pumped Storage on Spot Pricing of Real and Reactive Power in Restructured Power Market", National Conference on Technological Advances and Computational techniques in Electrical Engineering (TACT 2009) NIT Hamirpur, India, 14-17, Mar. 2009.
- P. Kanakasabapathy and K. Shanti Swarup, "Optimal Bidding Strategies for Pumped Storage Plant in Pool-Based Electricity Market", National Power System Conference (NPSC 2008) IIT Bombay, India, 16-18, Dec. 2008.
- P. Kanakasabapathy and K. Shanti Swarup, "Optimal Bidding Strategies for Multi-unit Pumped Storage Plant in Pool-Based Electricity Market Using Evolutionary Tristate PSO", IEEE International Conference on Sustainable Energy Technologies (IEEE ICSET 2008) Singapore, 24-27, Nov. 2008.
- P. Kanakasabapathy and K. Shanti Swarup, "Three-Tier Electricity Market Model for Restructuring Indian Power Sector", International Conference on Power System Analysis, Control and Optimisation (PSACO-2008), Visakhapatnam, India, 13-15, Mar. 2008.

Amrita Vishwa Vidyapeetham

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … のへで

PRESENTATION- OUTLINE

About WAPCOS

WAPCOS Experience in

- > Hydroelectric Projects
- Pumped Storage Projects
- Power Scenario- An Overview
- Pumped Storage Technology- Description
- > What it Offers
- Case Studies
- Preparation of DPR- Latest Guidelines
- Conclusion and Wayforward

WAPCOS Profile

Established under the aegis of Ministry of Water Resources in June 1969 under Companies Act, 1956

- ✓ To share India's experience and expertise
- ✓ Facilitate Diplomatic Initiatives
- ✓ To augment endeavors of State and Central agencies

Major Fields of Specialization

urces

eso

R

Nater

- Irrigation, Drainage and Water Management
- **Ground Water Exploration and Minor Irrigation**
- **Flood Control and River**
- Morphology
- **Dam and Reservoir** Engineering
- Water Bodies and Lakes Conservation
- **Agriculture Including Dry** Lands Farming
- **Rainfed and Irrigated** Agriculture
- Watershed Management
- **Natural Resources** Management

- Power Hydro Power
 - Thermal Power
 - **Pumped Storage Projects**
 - Transmission & Distribution
 - \cdot Rural Electrification
 - Non
 - conventional Sources of Energy

Infrastructure

- Water Supply, **Sanitation and** Drainage
- Environment
- Ports & Harbours and Inland
- Waterways
- Urban and Rural **Areas Development**
- **Roads and Highway** Engineering

Introduction (Contd.)

Range of Consultancy Services

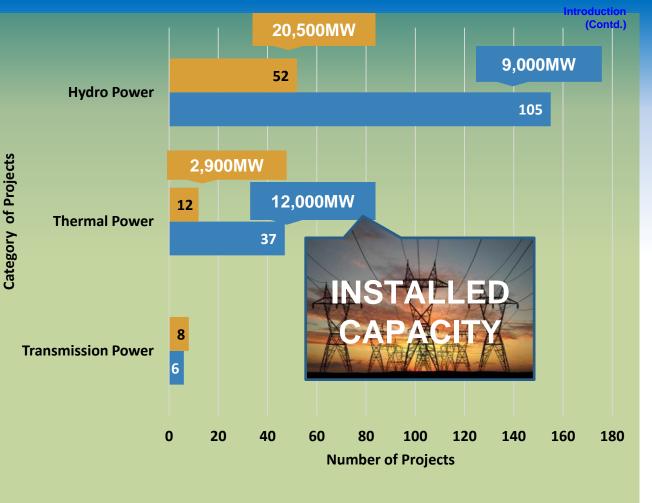
Preliminary Investigations/ Reconnaissance

Feasibility Studies/Planning/Project Formulation

Baseline and Socio-Economic Surveys Field Surveys & Investigations and Testing

Institutional/Human Resource Development

Ghat Development


Engineering Designs, Drawings and Tendering Process

Project Management and Construction Supervision

Operations and Maintenance

USP POWER

Concept to Commissioning

Overseas

India

Introduction (Contd.)

USP WATER RESOURCES

In Irrigation, Water Resources, Flood Control, Ground Water, Agricultural etc.

Contributed in Development of Irrigation Potential of Over 15 Million Ha.

In India & Abroad in the fields of Irrigation, Hydro Power, Thermal Power, Ports & Harbor

Environmental Impact Assessment Studies

Introduction (Contd.)

USP INFRASTRUCTURE

In Water Supply & Sanitation, IEC, Rural & Urban Development, Roads and Highways Engineering, etc.

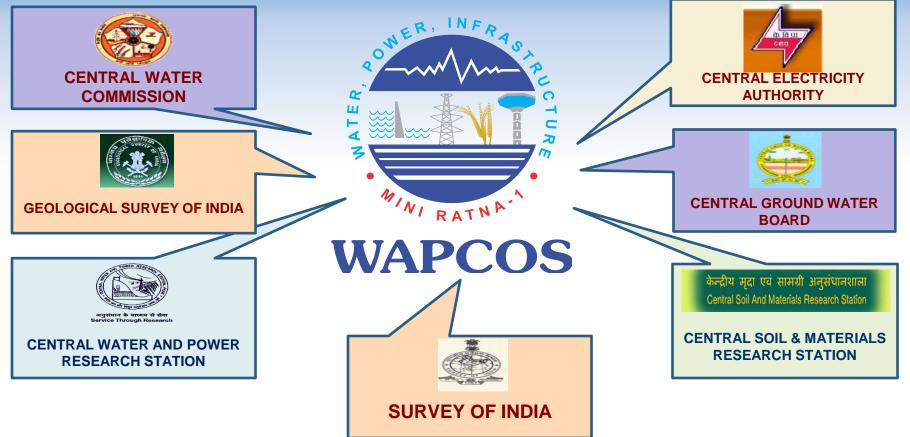
WILLINGNESS TO GO 'EXTRA MILE'

Navigation Projects
Surveys &

Ports and Inland

Investigations/Modeling/ Detailed Engineering

Registration with International Organizations



Dς

- World Bank
- Asian Development Bank
- African Development Bank
- Japan Bank for International Cooperation
- United Nations Office for Project Services

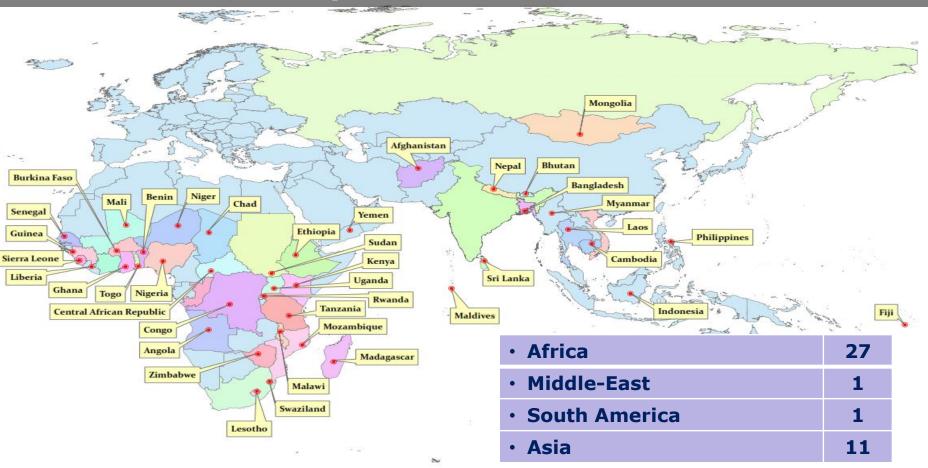
Supporting Organisations

Introduction (Contd.)

Quality Management System

Consultancy Services

Quality Management System conform to ISO 9001:2008 for Consultancy Services in Water Resources, Power and Infrastructure Development Projects


✓ Valid upto October, 2017

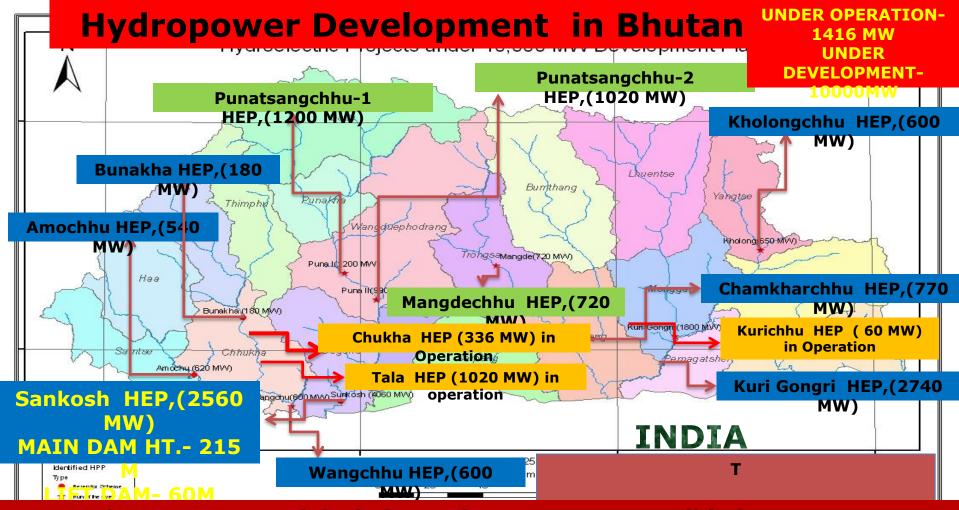
	LASS
SYSTEMS AND	SOLUTIONS PRIVATE LIMITED
CERTIFIC	ATE OF APPROVAL
	an Register Quality Systems stems and Solutions Private Limited)
This is to certify that	the Quality Management System of
Organisation:	Wapcos Limited
Address:	Plot No. 76C, Institutional Area, Sector - 18,Gurgaon - 122 015, Haryana
has been assessed and four	nd conforming to the following requirement
Standard Certified:	ISO 9001:2008
Scope:	Consultancy Services in Water Resources, Power and Infrastructure Development Projects
Certificate No.:	IRQS/1410709 granted on: 22 nd October 2014
	Shashi Nath Mishra

• WAPCOS is accredited by NABET for conducting EIA Studies for Projects in the areas of River Valley, Thermal Power, Mines, Ports & Harbours and Building Construction

ntroduction (Contd.)

Operations Abroad

Introduction


(Contd.)

Introduction (Contd.)

Operations in India

Hydropower Potential of Bhutan is 30000 MW, Feasible is 23760 MW

Hydropower Development in India

- WAPCOS successfully completed 71 PFR's of H.E. Projects in India in year 2003-2005 under PM's 50000 MW Initiative for Hydro power Development
- WAPCOS has recently been appointed consultants by Central Electricity Authority (CEA) for Basin-wise review of balance Hydroelectric Potential including Pumped Storage Projects & Preparation of Basin Reports for following basins:
- Indus Basin
- Ganga Basin
- Brahmaputra Basin
- West Flowing rivers of Southern India
- East flowing rivers of Southern India

WAPCOS EXPERIENCE IN PUMPED STORAGE PROJECT

Туре

- Installed capacity
- Power
- Location
- Peak duration

- Pumped Storage Project
 4 x 225 MW
 5,400MWh
 West Bengal
- 6 Hours

- Type Installed capacity
- Power
- Location
- Peak duration

- Pumped Storage Project
- 4 x 250 MW
- 5,000MWh
- West Bengal
- 5 Hours

TURGA PUMPED STORAGE PROJECT (4 x 250 MW), INDIA (TEC obtained in 2016)

PURULIA PUMPED STORAGE PROJECT (4 x 225 MW), INDIA (Under operation since 2007)

WAPCOS EXPERIENCE IN PUMPED STORAGE PROJECT

Client: OHPC,	
Government of Odisha	

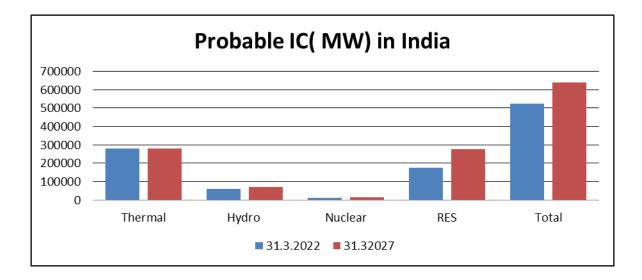
Scope of Services:

- Preparation of DPR
- Surveys and Investigations

Client: TANGEDCO, Tamilnadu

Scope of Services:

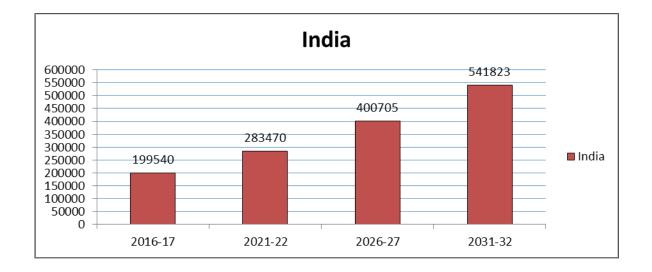
 Review of DPR
 Tender Engineering & Detailed Design Engineering
 Construction Supervision


UPPER INDRAVATI PUMPED STORAGE PROJECT [600 MW]

KUNDAH PUMPED STORAGE PROJECT [500 MW]

SHARAVATHY PSP, 1000 MW, Lugu Pahad PSP, 1500 MW, West Bengal KARNATAKA The Project is Pumped Storage Project, (1000 MW) for which Lugu Pahad PSP.3000 \geq the Detailed Project Report (DPR) is being prepared. MW- Damodar Valley Corporation, Jharkhand WAPCOS has been recently appointed as the Engineering \succ Consultant of the Project for Preparation of PFR,DPR including Surveys and Investigation by KPCL. Upper Kolab PSP, OHPC Bandu PSP, 900 MW, West Bengal The Project is Pumped Storage Project, (900 MW) for which \geq the PFR is being prepared. \succ WAPCOS has been recently appointed as the Engineering Consultant of the Project for Preparation of PFR by WBSEDCL.

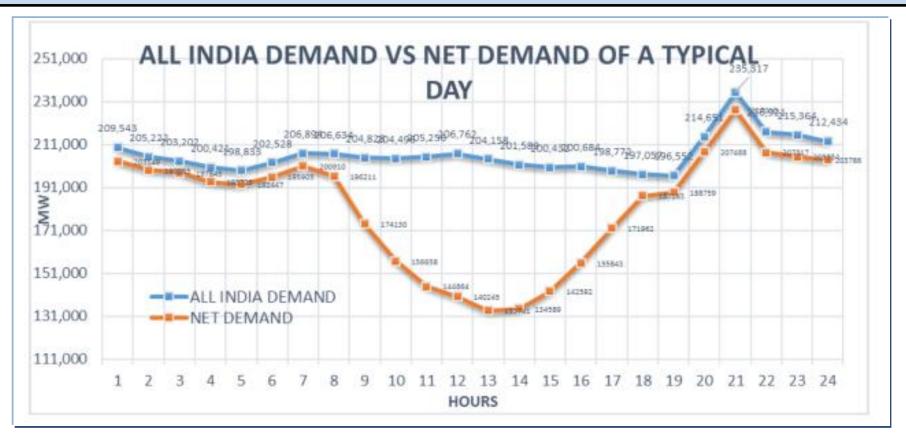
POWER SCENARIO- An Overview


	As on 31.3.2022	As on 31.3.2027
Thermal	278481	278481
Hydro	59828	71828
Nuclear	10080	14880
RES	175000	275000
Total	523389	640189
Hydro share (%)	11.4	11.2

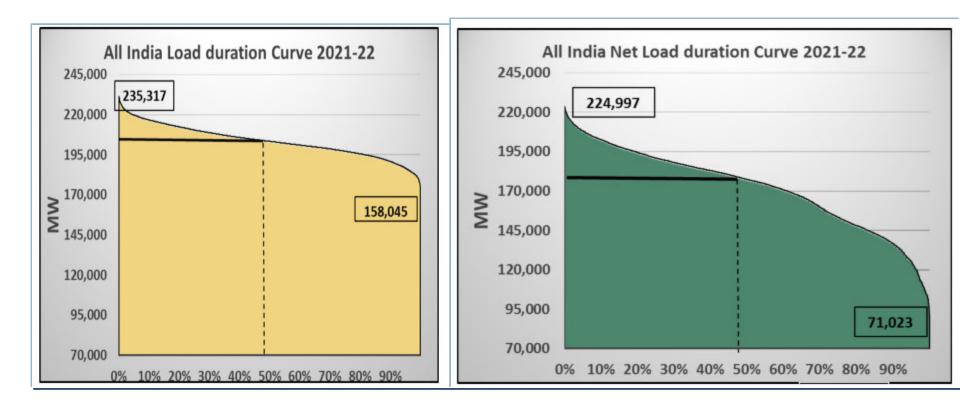
POWER SCENARIO- An Overview

Forecast of Annual Peak Load (MW) for terminal years of 12th to 15th plan

	2016-17	2021-22	2026-27	2031-32
All India	199540	283470	400705	541823



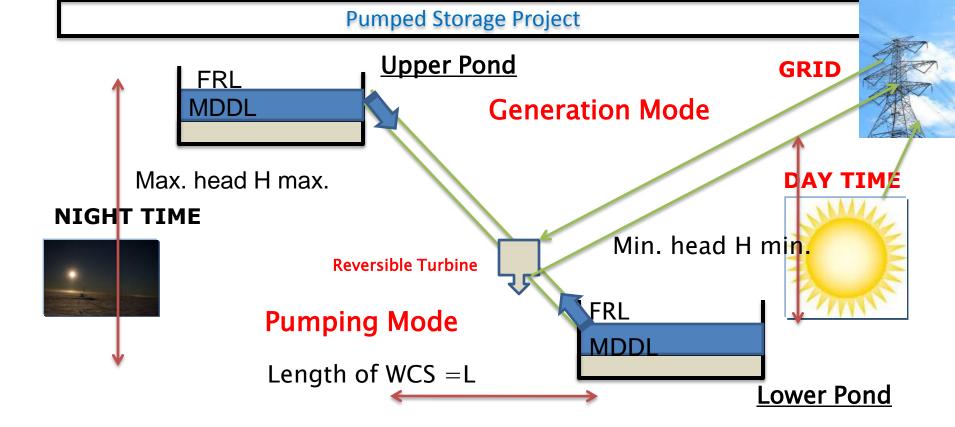
RENEWABLES- PROJECTIONS


- As per Draft NEP 2016 -All India Installed Capacity of RES to 175 GW and 275 GW by 2021-22 and 2026-27 respectively
- An average of 20% of Installed Capacity is expected to be Solar as per Government's Policy.
- The projected installed capacity for 2021-22 and 2026-27 are given below:

	2026-27		2021-22	
Fuel Type	Capacity (MW)	%	Capacity (MW)	%
Hydro	71,828		59,828	
Coal + Lignite	2,48,513*		2,48,513*	
Gas	29,968		29,968	
Nuclear	14,880		10,880	
Total Conventional Capacity *	3,65,189	57%	348,389	67%
Total Renewable Capacity	2,75,000	43%	175,000	33%
Total Capacity by 2026-27	6,40,189	100%	523,389	100%

CHALLENEGES- INTEGRATION OF RENEWABLES

CHALLENGES- INTEGRATION OF RENEWABLES



Pumped Storage Technology

In order to address this problem the efforts were made to evolve various ENERGY STORAGE means.

> Technology Description:

- The basic arrangement Involves two storage reservoirs upper and lower separated at vertical difference with reversible turbine /pump between the two reservoirs.
- The technology is a Mechanical storage of the energy.
- Water is lifted to the upper reservoir by pumping mechanism through extra electricity during off-peak time.
- The stored potential energy in the upper reservoir is used to generate electricity by turbines when they are needed.
- Pumping is similar to Charging the Batteries for future use.
- > This is a Natural Battery with associated inherent advantages .

L/H max. Ideally around 5 to 7 H max/H min. < 1.5

GRID LEVEL

- It utilizes grid power during off peak hour when frequency is high and supply power during peak hour and whenever required.
- Regulates frequency to meet sudden load changes in the network.
- Improve grid controllability, Grid stability and Security

> THERMAL STATIONS

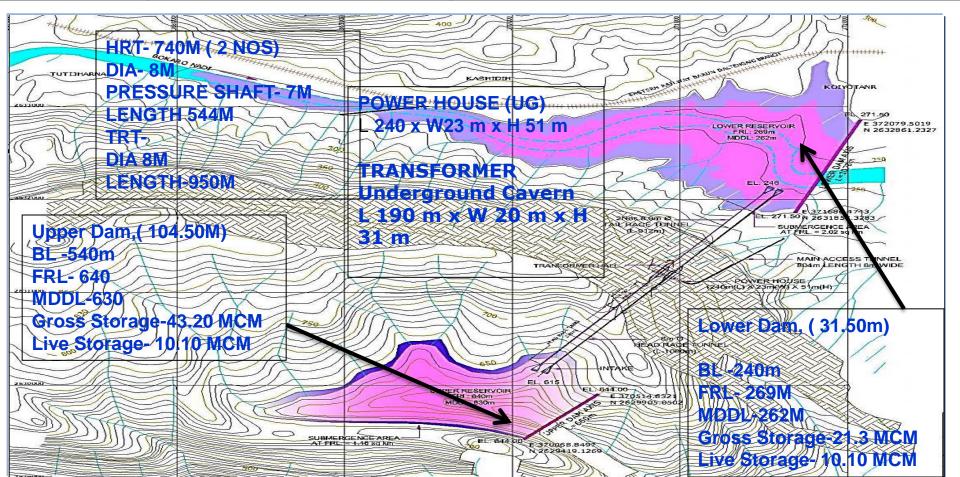
- Increase capacity utilization of Thermal stations
- Reduce operational problem of thermal stations during Light load period

> GENERAL

- Provides Black Start facility
- It addresses intermittence of renewable energy to a large extent
- It improves the tradability of power in the electricity market
- It helps improve hydro thermal mix ratio
- Availability of spinning reserve at almost no cost to the system
- Pumped Storage Schemes improve over all economy of power system operation

Pumped Storage Projects- Technical Complexities Involved

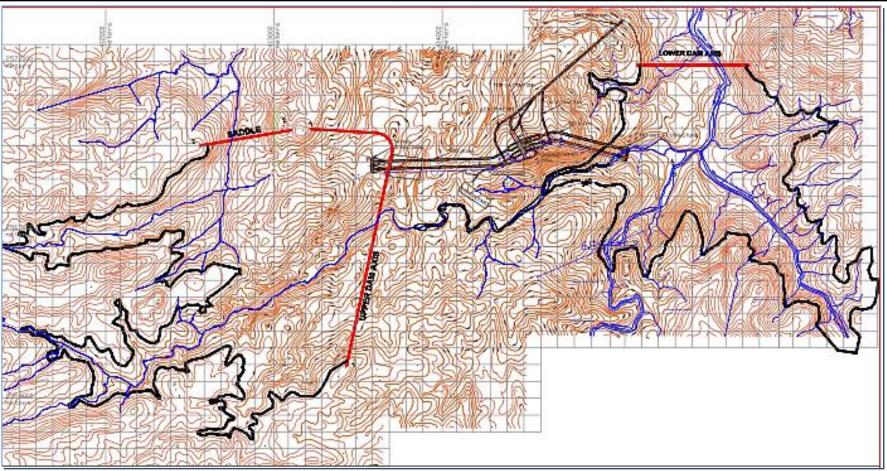
General

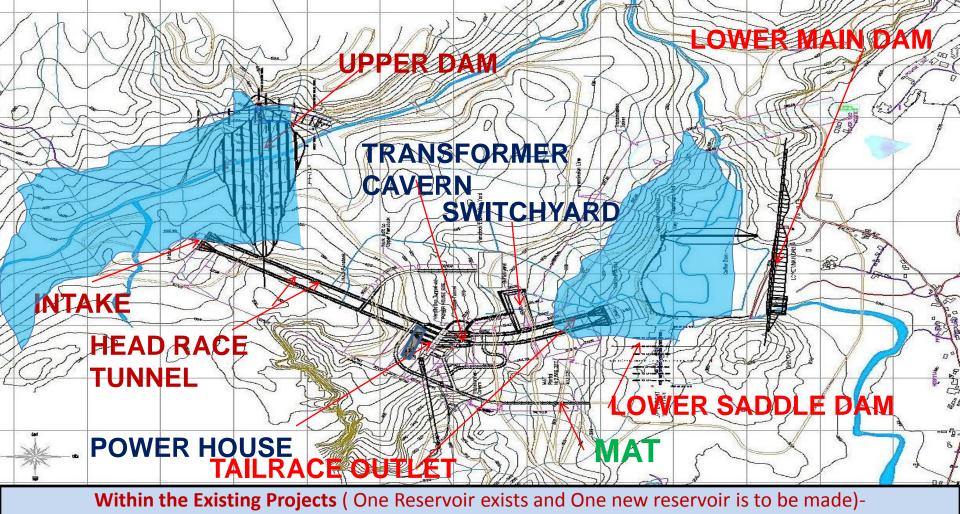

- Essentially require two reservoirs Results in
- Submergence Issues
- Land Requirement Issues
- R& R Issues
- More requirement of Construction material
- Site Specific Requirements
- Two reservoir to be in close vicinity due to L/H ratio Difficult to Find
- High Head Makes PSP attractive- Few sites in India
- Desired topography and river meandering to have short WCS
- Desired topography and Geology conducive to have straight WCS
- Steep River gradient to have maximum head in minimum distance
- Difficulties in siting two Intake structures for upper and Lower pond
- Large head variations between FRL and MDDL and associated slope stability issues
- Large head variation impacts Machine design

Need of Innovative & Cost Effective Engineering

- > The viability of any Pumped Storage Project has always been an issue due to cycle efficiency
- Besides many other factors, above issues often result in increased cost thereby affecting the viability of the project.
- Hence identification of suitable site, planning and design requires utmost care and judicious decision making to develop Pumped storage projects.
- Given the paucity of new sites, it is difficult to find new sites for installation of Pumped Storage Projects various innovative combinations must be considered for installing Pumped Storage Project.
- Special efforts should be made to utilise existing H.E. projects with adequate reservoir storage.
- The planning and design of each of the above three types are distinctly different from each other and require meticulous planning at each stage of development

- > New Pumped Storage Projects (Both new reservoirs to be made)-
- Lugu Pahar Pumped Storage Project, 6X250MW, Jharkhand
- Within the Existing Projects (One Reservoir exists and One new reservoir is to be made)
- Turga Pumped Storage Project, 4X250 MW), West Bengal
- Within the Existing projects (Both reservoirs exists)
- Sharavathy Pumped Storage Project, 8X250 MW, Karnataka

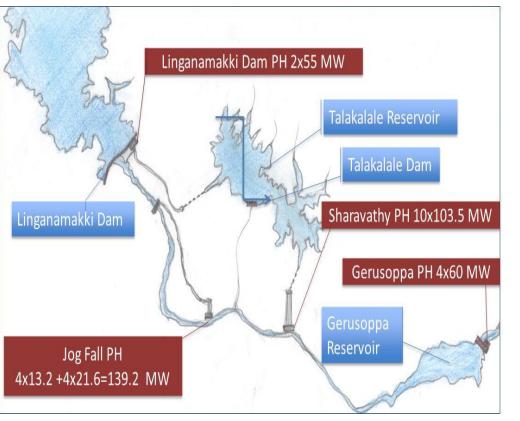

New Pumped Storage Projects (Both new reservoirs to be made)-Lugu Pahar Pumped Storage Project, 6X250MW, Jharkhand



Project Features

- The Lugu pahar Pumped Storage project envisages construction of:
- > A 104.50 m high Rockfill New upper dam with central impervious clay core.
- Live storage of 10.10 M cum with FRL at 640.0 m and MDDL at 630.00 m;
- > A 31.50 m high Rockfill New lower dam with central impervious clay core.
- live storage of 10.10 M cum with FRL at 269.00 m and MDDL at 262.00 m;
- > 2 (two) No. 740 m long, 8.0 m diameter headrace tunnel
- > 2 (two) No. 544 m long, 7.0 m diameter pressure shaft
- > 2 (two) No. 950 m long, 8.0 m diameter headrace tunnel
- An underground power house having an installation of 6 Francis type reversible pumpturbine driven generating units of 250MW capacity each
- An installed capacity of 1500 MW has been adopted based on the simulation studies carried out for different FRLs and installed capacities to provide peaking benefits for 6 hours.

New Pumped Storage Projects (Both new reservoirs to be made)-Bandu Pumped Storage Project, 900 MW, West Bengal



Turga Pumped Storage Project, 4X250 MW), West Bengal

The Turga Pumped Storage project envisages construction of:

- > A 63.50 m high Rockfill New upper dam with central impervious clay core.
- Live storage of 14.20 M cum with FRL at 464.0 m and MDDL at 444.40 m;
- > A 64 m high concrete dam modified at existing lower dam location.
- live storage of 14.20 M cum with FRL at 316.50 m and MDDL at 280.40 m;
- > 2 (two) No. 932 m long, 9.0 m diameter circular steel lined headrace tunnel
- An underground power house having an installation of 4 Francis type reversible pumpturbine driven generating units of 250MW capacity each
- 2 (two) No. 10m dia 605 m long tail race tunnels to carry the power house releases to lower reservoir.
- An installed capacity of 1000 MW has been adopted based on the simulation studies carried out for different FRLs and installed capacities to provide peaking benefits for 5 hours.

Within the Existing projects (Both reservoirs exists) Sharavathy Pumped Storage Project, 8X250 MW, Karnataka

- Project with installed capacity of 2000 MW is planned between existing Talakalale and Gerusoppa reservoir The proposed pumped storage project is an additional installation utilising the existing Sharavathy system consisting of Liganamakhi, Talakalale Dam and Gerusoppa Dam.
- Five (5) reservoirs regulate monsoon surplus waters of the Sharavathy and adjacent streams.
- KPCL has three major hydroelectric stations in the basin with a total installed capacity of 1330 MW.

Plant Planning & Installed Capacity

Storage Available at Two Reservoirs for Pumped Storage Project

Sr. No.	Reservoir	FRL (m)	MDDL (m)	Live Storage (MCM)
1	Talakalale	522.12	520.59	13.6
2	Gerusoppa	55.00	43.50	58.21

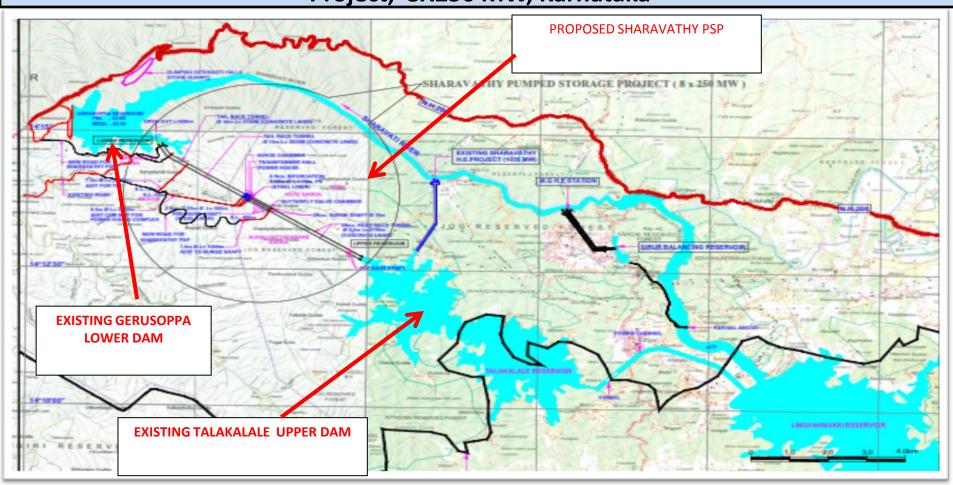
Sharavathy PSS- Storage Requirement (MCM) for Different Installed Capacity for 6 hours peaking operation

Installed Capacity (MW)	Total Storage Requirement (MCM)	Storage Required for existing Sharavathy HEP (MCM)*	Storage Required for Sharavathy PSS (MCM)
1000	6.81	1.63	5.18
1250	8.11	1.63	6.48
1500	9.41	1.63	7.78
1750	10.7	1.63	9.07
2000	12.0	1.63	10.37

*During 6 hours of Peaking operation

It would be seen from above that sufficient storage is available at upper reservoir for Sharavathy Pumped Storage scheme for installation of 2000 MW. The lower reservoir at Gerusoppa with live storage of 58.21 MCM would not pose any constrain in the selection of installed capacity.

Project Layout Evolution


Objective

- Shortest Water Conductor System
- Straight WCS (Minimum Bends) for better Hydraulics
 - From Topographical & Geological Considerations
- Location of Intakes
- Location of Surge Shafts
- Location and Orientation of Power house
- No infringement with any Existing structure

Constraints

- Proximity to Sharavathy WLS
- To Minimize over ground Project Components such as Portals, roads etc.
- No Alterations in the existing Reservoir Levels

Within the Existing projects (Both reservoirs exists)-Sharavathy Pumped Storage Project, 8X250 MW, Karnataka

PROJECT FEATURES

The Sharavathy Pumped Storage project envisages construction of:

- > 2 (two) No. intake with trash racks having mechanical raking arrangement.
- 2 (two) No. 2.726 Km long, 9 m diameter circular concrete lined headrace tunnels including cut & cover.
- 2 (two) No. 0.828 Km long, 5.25m diameter inclined circular steel lined (including horizontal) pressure shafts
- > 2(two) no. 16m dia circular Surge Shafts 52m high.
- An underground power house having an installation of 8 Francis type reversible pumpturbine driven generating units of 250MW capacity each
- 2 (two) no. 3.780 Km & 3.830 Km long concrete lined tail race tunnels to carry the power house releases to lower reservoir.

Plant Planning & Installed Capacity

The factors influencing the Installed Capacity of Pumped Storage Scheme :

- The requirement of daily peaking hours of Operation
- Operating head
- Live Storage available in the reservoirs and their area capacity Characteristics
- Operating Parameters of existing Sharavathy HEP Project (1035 MW)

Computer Software for Daily Operation Simulation

- The operation in either mode viz. generation or pumping, results in <u>continuous change in the levels</u> of the two reservoirs as also consequently change in the operating head on the machines.
- The impact of such continuous variations in head is <u>best</u> <u>captured by simulation of operation of the scheme considering</u> <u>shorter time intervals of 10 minutes.</u>
- An efficient computer software developed helps in carrying out various alternative simulation by changing key parameters such as levels in both reservoir, component diameters, length of WCS, efficiency etc. in order to optimize the parameters.

Operation Simulation

Microsoft Excel ro-Enabled Worksl

APPROACH & ACTIVITY SCHEDULE

- Preparation of DPR Involves various inter connected activities.
- Interface within WAPCOS and KSEB required.
- Interface with all the appraisal agencies like
- CEA/CWC/GSI/CSMRS to achieve the objective within the prescribed time limit.
- WAPCOS shall deploy Interdisciplinary teams comprising of well experienced experts, professional staff and other supporting staff.

TEAM COMPOSITION

Advisory Group

To review entire project in line with KPCL requirement and the works of different Expert Groups

 Experts Sub-Groups

- Project hydrology
- Project geology
- Geological and geotechnical explorations at various project sites
- Construction materials investigation
- Project optimization
- Civil designs & Hydro-mechanical works
- Hydropower planning
- Electro-mechanical Designs
- Construction methodology and equipment planning
- Project cost estimates
- EIA study
- Economic And Financial Analysis

Technical Approach, Work plan & Activity Schedule

- 1 Mobilization of Resources and setting up of site office
- ² Collection of additional data/ information
- ³ Preparation of PFR- Based on available information prepare PFR & submit it for ToR in MoEF
- ⁴ Preparation Detailed Project Report (DPR)- PRE- DPR Stage & EIA/EMP studies
- ⁵ Forest Area survey
- Survey and Investigations
- ^{6.1} Construction materials Survey & testing for coarse and fine aggregates etc.
- ^{6.2} Hydrographic Survey at Intake Locations to Plan Both Intake Structure in the reservoirs
- ^{6.3} Geological mapping of Project area
- 6.4 Core Drilling
- 6.5 Exploratory Drifting
- 6.6 Laboartory Testing & Insitu testing
- ^{7.0} Hydrology- Review of Water Availability and Flood studies
- ^{8.0} Civil Design- Review of Designs for Talakalale dam and Gerusappa dam
- ^{9.0} Finalisation of project Layout and Obtaining of Pre DPR clearances
- 10. Acceptance of DPR for Examination by CEA

Technical Approach, Work plan & Activity Schedule

Preparation of Complete DPR after Prior Clearances 7.0 Civil Designs - Power Intakes, HRT, Power House Complex and appurtenant works, TRT **8.0 EIA/EMP Studies** 9.0 Transmission studies 10.0 Construction Programme & Equipment Planning 11.0 Preparation of detailed drawings for DPR stage 12.0 Preparation of BOQ, Rate analysis and cost estimate 13.0 Economic and financial analysis 14.0 Preparation of DPR 15.0 Submission of draft DPR in CEA 16.0 Compliance of Comments of different appraisal agencies on draft DPR 17.0 Submission of Final DPR for TEC

	Key Surveys & Investigation											
SI. No.	Description of Item	Remarks										
1	Sub Surface Core Drilling	At Power House complex, HRT, Surge Shafts, pressure Shafts, TRT. Miscellaneous Location as per requirement										
2	Exploratory Drifting	Exploratory Drift to power House Cavity Including cross cuts										
3	Geo-Physical Investigation	At Power House complex										
i)	Seismic Profiling	At Power House complex										
4	Geotechnica	al Investigation										
i)	Field In situ Tests	Deformation Modulus & Hydro-fracture Tests										
ii)	Laboratory Tests	Rock Mechanics tests										
iii)	Construction Material Tests	Coarse and fine aggregates etc										
5	Conducting Field Permeability Test											
6	Site Specific Seismic design parameters											
7	Topographical Survey	As per requirement										

ACTIVITY SCHEDULE FOR PALLIVASAL PUMPED STORAGE PROJECT, KERALA

SLNo.	No. ACTIVITY			DPR PREPARATION AND SUBMISSION							DPR PREPARATION AND SUBMISSION										ASSI	SSISTANCE TO KSEB IN APPRAISAL &TEC																
			1	2	3	4		5	6	7	8	9	1	0	11	12	13	3	14	15	16	i 1	7	18	19	20	1	21	22	23	24	25	26	1	27	28	29	30
1	DESCRIPTION																																					
	Data Collection from KSEB and other agencies by WAPCOS	0.5																																				
2	Review of available data/records, peliminry site visit	0.5																																				
3	Preapartion of PFR and ToR for MoEF	3					ł	,																														
4	Topographical Survey	6																																				
5	Geotechnical Investigation , and Geological Mapping	18					-																ORIFT															
6	Hydrological Studies	6																																				
7	Power Potential Study based upon Hydrological Study	6																																				
	Construction Material Survey & Investigation and all Testing	12																																				
	Preapartion & Submission of chapters for Pre DPR clearance	10																																				
	Design of main civil works like review of Dam Design, Intake structure, Power House complex based upon Topographical survey & Geological Inputs.	6																																				
	Design of H/M equipments	4																																				
12	Design of E/M equipment i.e. Switchyard etc.	6																			\vdash	+				+		+										
13	Preparation of DPR stage Drawings	4					Τ																															
	Construction Scheduling and Euipment Planning.	3																								H												
-	Quantity Estimate, Analysis of Unit Rates, Preparation of BOQ.	5																																				
	Preparation of Draft DPR its submission	4																																				
17	Assistaance to KSEB during Appraisal & TEC	6																																	÷			Ŧ

NEW CEA GUIDELINES - PRE-DPR STAGE CLEARANCES

SI. No.	Aspect	SI. No.	Aspect
1	Hydrological	6	Cons. Material & Geotechnical
1	Design Flood	7	Inter-State
2	Geological	8	International
3	Foundation Engg. and Seismic	9	ROR/Storage
4	Power Potential		
5	Project General Layout and Planning		

APPRAISAL STAGE CLEARANCES

SI. No.	Aspect	SI. No.	Aspect	SI. No.	Aspect						
10	Dam/Barrage Design	15	Power Evacuation	21	Civil Quantities						
10	Embankment	16	Cost of E&M and Misc Works	22	Civil Cost						
11	Gates/HM Design	17	Phasing of E&M and Misc Works	23	Phasing of Civil Works						
12	Instrumentatio n	18	Legal (CEA)	24	Financial and Commercial aspects (F&CA)						
13	Hydel Civil Design	19	Construction Power aspects								
14	E&M Design	20	Plant Planning								

Hydro Power vs. PSP

- Does not change the River <u>Hydrological Regime</u>- Major obstacle for Hydro Power
- No impact on u/s and d/s development Major issue in HE development
- <u>Uniform Generation</u> round the year- large variability Seasonwise
- Peaking operation does not adversely affect d/s river reach- Major cause of concern in HEP
- Most 1000 MW PSP on small Tertiary Streams Minimum Infrastructure requirement
- Installed capacity depends on <u>Topography and operation hrs</u>. and not Hydrology- More Flexible

- In view of large scale induction of Renewables in near future development of Pumped Storage projects needs focused attention and support.
- Pumped Storage project planning is distinctly different from conventional Hydro Planning.
- There are inherent complexities and site specific constraints in planning and design of Pumped Storage Projects.
- Hence, meticulous planning with judicious decision making is essential while making trade offs between priorities which are at times competing with each other.
- There are only few good Pumped Storage sites , which meet the requirement of a good pumped storage development in India.

Conclusion & Way forward

- Many identified sites have now become unavailable due to stringent Environmental, and Social stipulations together with difficulties in land acquisition.
- Many sites may be unavailable due to proximities to the national Parks etc.
- In view of above , it is of utmost importance that all the possible new sites are explored in totality.
- Efforts should be made to study all the existing projects having one reservoir or two reservoir in proximity and explore the possibility of installation of Pumped Storage projects within the existing system.
- This will minimize many adverse impacts and address developmental challenges.
- The PSP development within existing projects will greatly reduce the cost and help making Pumped storage project economically viable.

Conclusion & Wayforward

Policy Issues

- Considering the necessity of the PSP, enabling policy framework is in active consideration and need of the hour.
- The PSP is destined to be a GRID Element with associated financial support.
- It will be a Must run Case and will be an important asset to the system soon.
- By the time Sharavathy project becomes operational, all these mechanism are likely to be in place.
- At present , Purulia PSP (900 MW) is being successfully operated by WBSEDCL.

WAY FORWARD

WAPCOS IS FULLY EQUPPED TO CARRY OUT ABOVE WORK IN MOST PROFESSIONAL & TIME BOUND MANNER

hank you

Investigation, Planning, Design new Hydro Pumped Storage Projects

Peter Matt

- General basic design
- Implementation of new pumped storage projects
- Upgrading existing plants

Basic questions?

- What is the business case? Controll energy, balancing, generation, **flexibility, storage**
- Topography , geology, precipitation, environmental protection; environmental conservation, ecological mitigation measures, existing schemes,
- Accessibility to a high voltage transmission line
- Transport connection of the site
- Site procedure
- Financing
- •

Control Range of units

Ternary Units

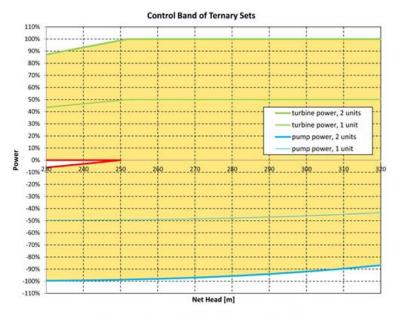


Fig. 1: Power control band of a ternary set

Source: Vorarlberger Illwerke AG

EMC Kerala, Feb 2018

illwerke vkw

Pumpturbine

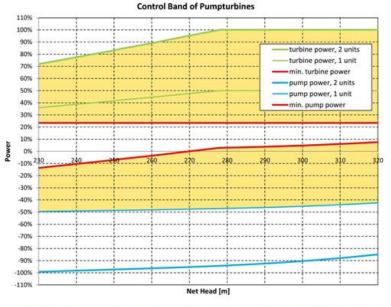
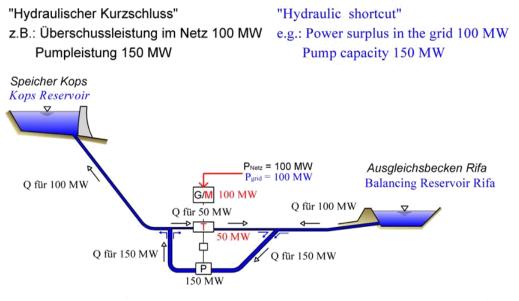


Fig. 2: Power control band of a pumpturbines without part-load stabilisation

Seite 4

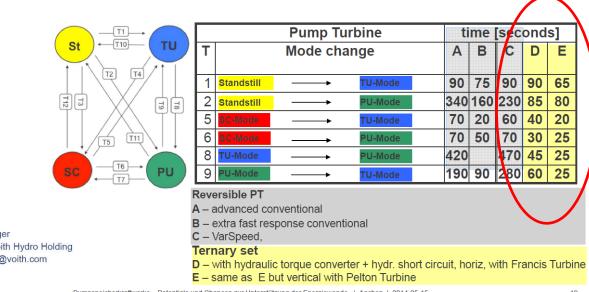
Hydraulic Short Circuit - SC



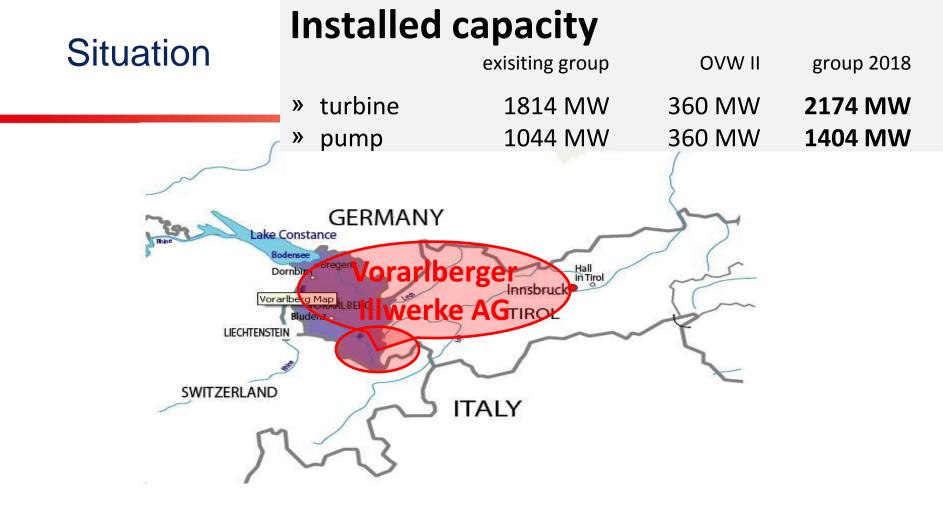
Waterfall M.C. Escher 1961

Flexibility & Dynamic between Turbine and Pump Mode

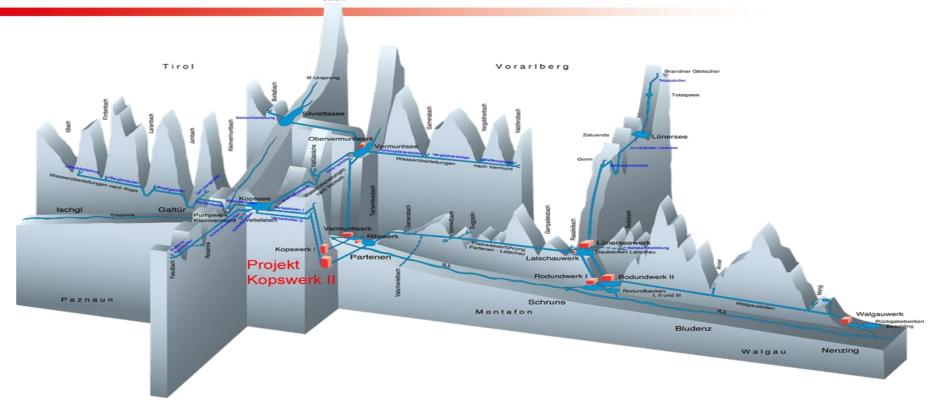
- G/M Generator / Motor läuft mit 100 MW
- T Turbine: (bei Kops II Pelton) erzeugt 50 MW
- P Pumpe "bekommt" 150 MW
- Q Durchfluss


Generator / Motor takes 100 MW from the grid Turbine generates 50 MW Pump "gets" 150 MW discharge

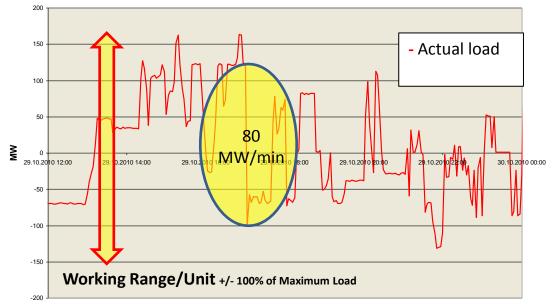
Flexibility & Dynamic **Turbine and Pump Mode**


VOITH

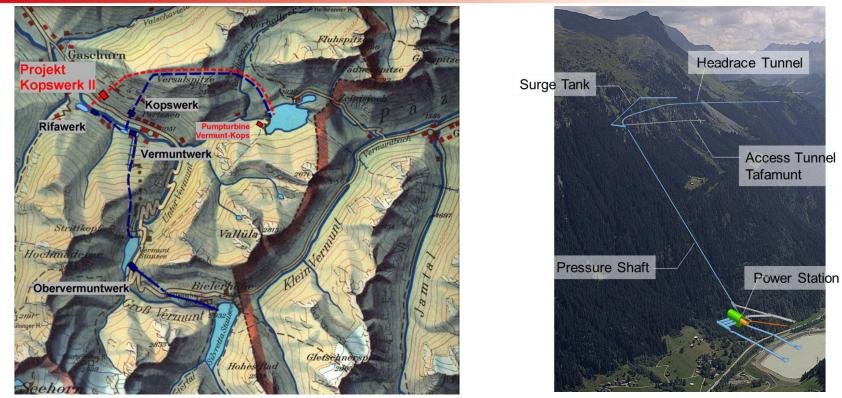
Mode changes: Flexibility and Dynamic


Dr. Klaus Krüger Leiter R&D Voith Hydro Holding klaus.krueger@voith.com

Pumpspeicherkraftwerke – Potentiale und Chancen zur Unterstützung der Energiewende | Aachen | 2014-05-15

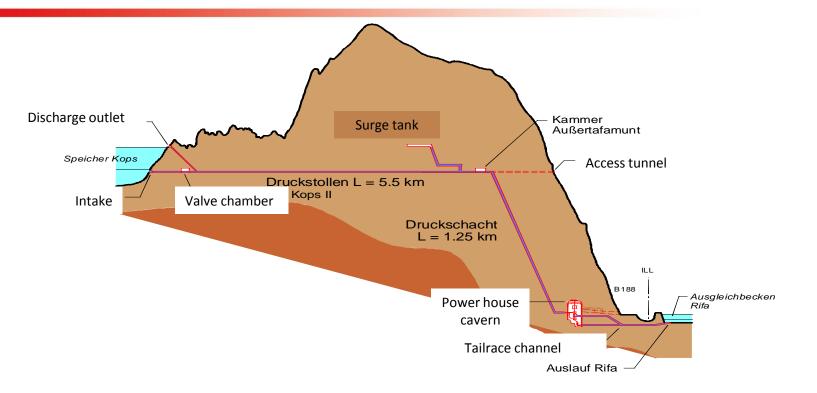

New Projects: **Kops II** Fitting into the existing scheme e.g. Illwerke

Typical Day Diagram one unit Kops II

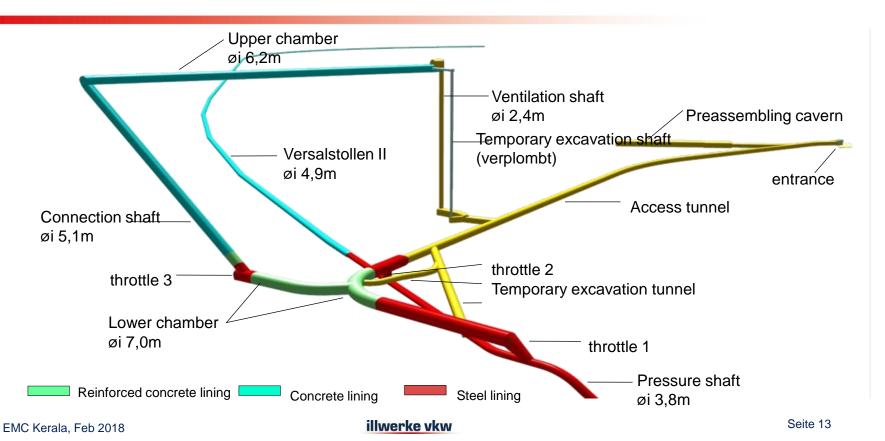


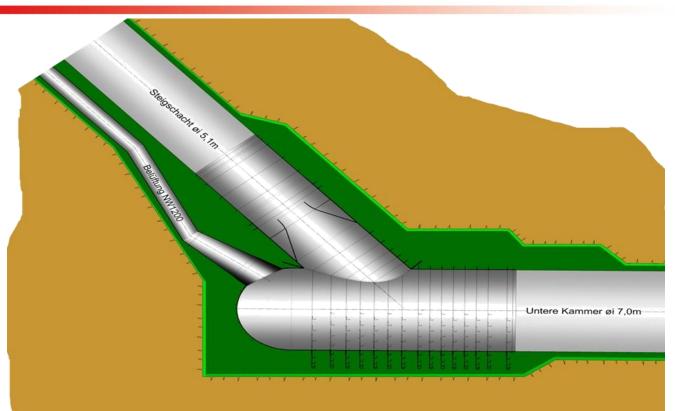
Zeit

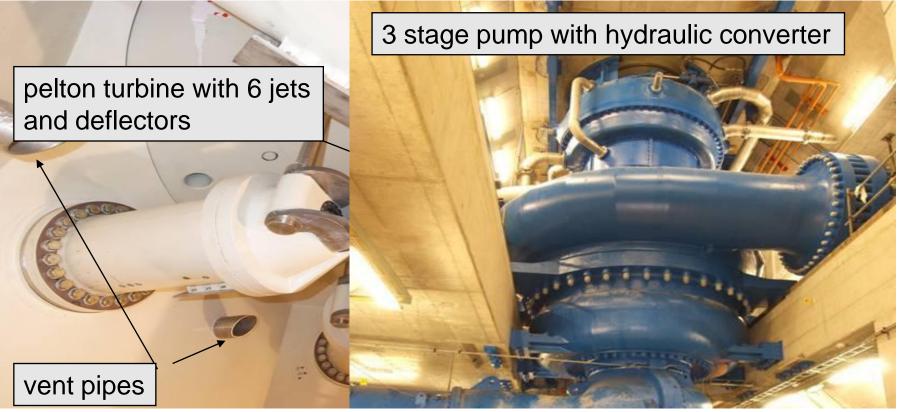
Scheme Kops II



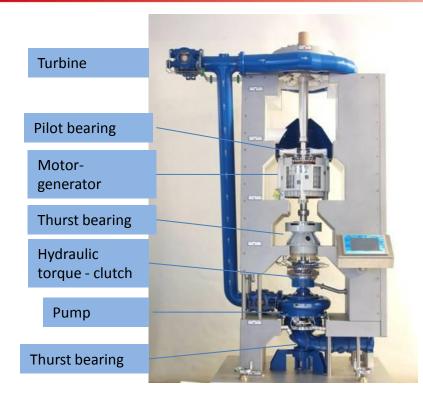
EMC Kerala, Feb 2018


Longitudinal section KOW II


Surge tank KOW II


Surge tank KOW II, throttle lower chamber

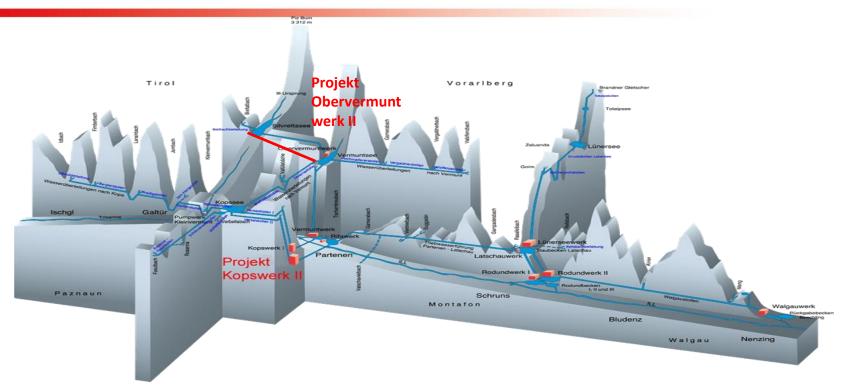
Kops II, Power Station with 3 units



EMC Kerala, Feb 2018

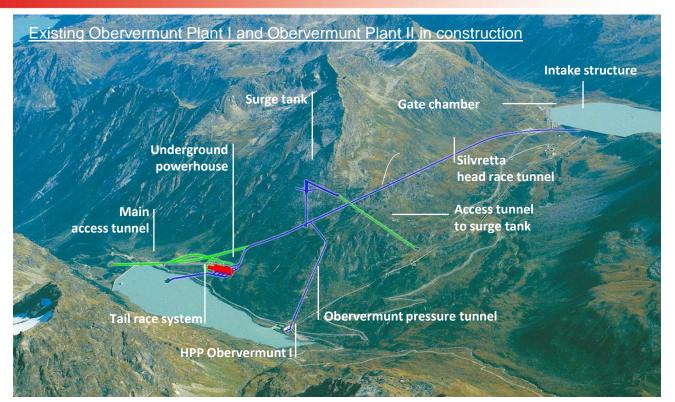
Kops II

10 years of experiences


- 8000 hours/annual per unit
- 10 20 changes of operation mode P/T
- The flexible operation meets exactly the demand of the volatile energy market

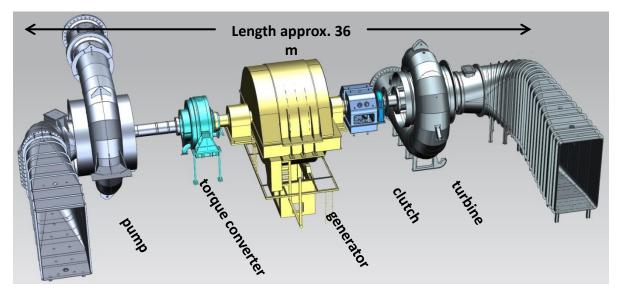
EMC Kerala, Feb 2018

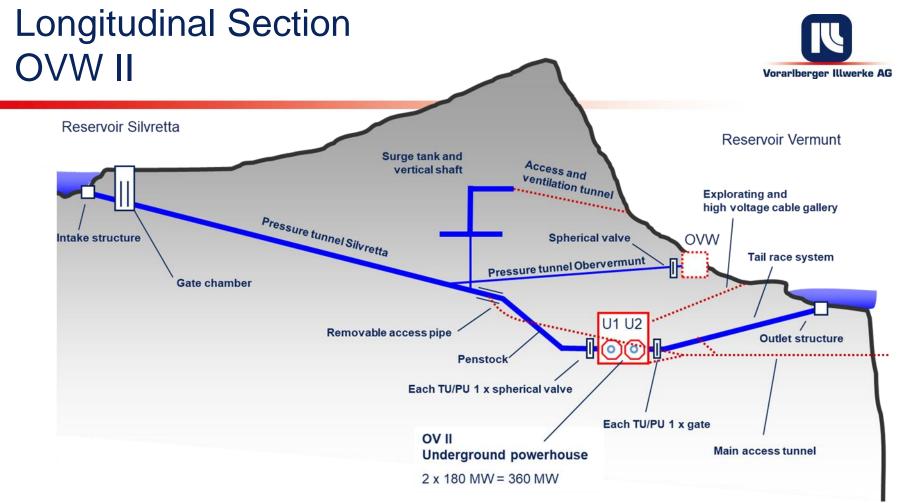
New Projects: **Obervermuntwerk II** Fitting into the existing scheme e.g. Illwerke



EMC Kerala, Feb 2018

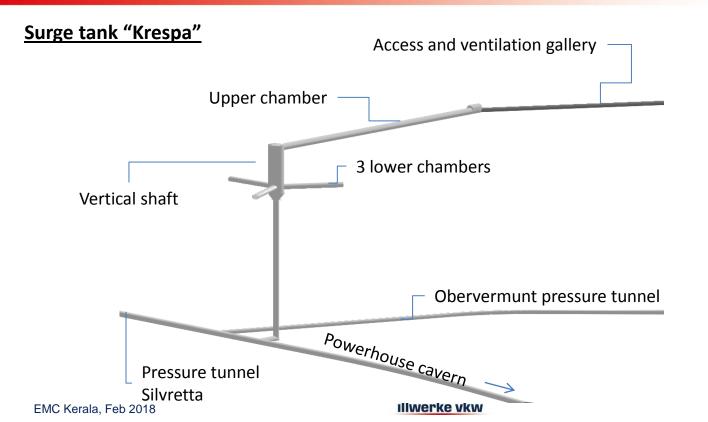
Obervermuntwerk II (2014-2018)


EMC Kerala, Feb 2018

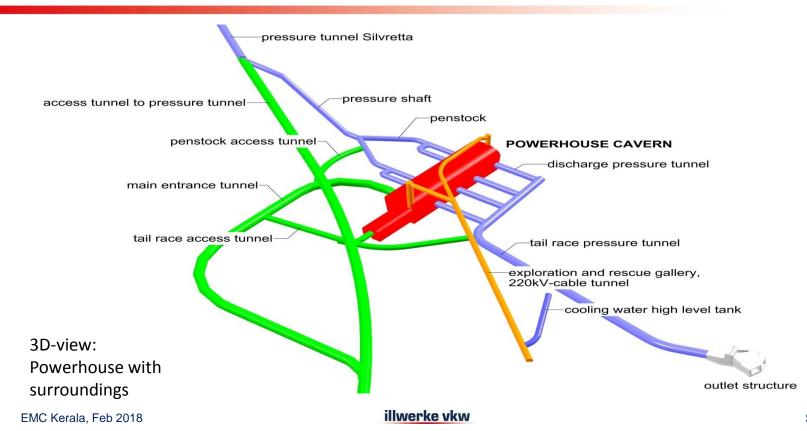

Technical Concept

- Two horizontal units, each existing of Francis turbine, clutch, motor-generator, torque converter and pump
- > The turbines are full adjustable from 100% to 0% without any part-load limit

Ternary Units:

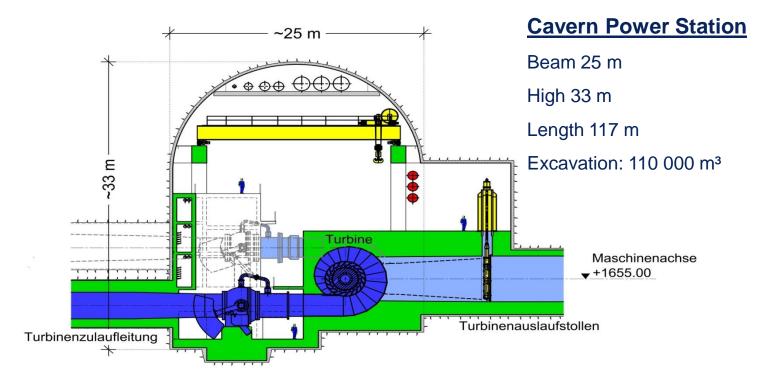


Surge Tank OVW II



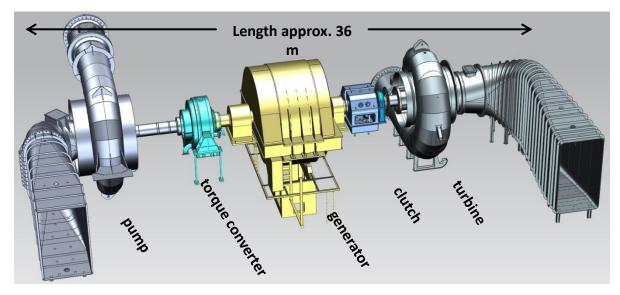
Seite 21

Technical Concept Power House



Seite 22

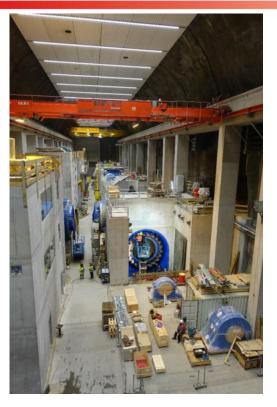
Cross Section Power Station



Technical Concept

- Two horizontal units, each existing of Francis turbine, clutch, motor-generator, torque converter and pump
- > The turbines are full adjustable from 100% to 0% without any part-load limit

Ternary Units:



Obervermuntwerk II: machine cavern under construction

Obervermuntwerk II

EMC Kerala, Feb 2018

Obervermuntwerk II

Turbine mit adjustable Distributor

EMC Kerala, Feb 2018

Runner Pump

Data Confrontation Kops II and Obervermuntwerk II

Technical Data	KOPS II	OBERVERMUNT II
Long term Storage	75 GWh	30 GWh
Short term Storage	3 GWh	4 GWh
Capacity Turbine Mode	520 MW 3 Units à 173 MW	360 MW 2 Units à 180 MW
Capacity Pump Mode	450 MW 3 Units à 150 MW	360 MW 2 Units à 180 MW
Full load hours pump mode	6 hours	11 hours
Working Range	-450 MW until + 520 MW	-360 MW until +360 MW
round trip efficiency	0,8	0,8
life time	80 years	80 years
cycles	10 ⁵ -10 ⁶	10 ⁵ -10 ⁶
power costs	850 EUR/kW	1100 EUR/kW

Limberg II / Limberg III

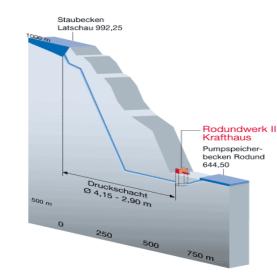
Verbund Wasserkraft in Österreich Einlaufbauwerk Limberg II / Limberg III SK Höhenburg Zufahrtstunnel pumpturbine Limberg I 480 MW (2x240 MW) Limberg II / Limberg III project status in operation / EIA approved Fredwasserstollen turbine mode 353 MW / 833 MW Wasserschloß pump mode 130 MW / 610 MW **PSW Limberg II** Drucksch --Stollen SK. UW. SK... Schieberkammer Zufahrtstunnel Limberg II UW... Unterwasser Kraftkaverne HW12 200

EMC Kerala, Feb 2018

Benefits of HPP

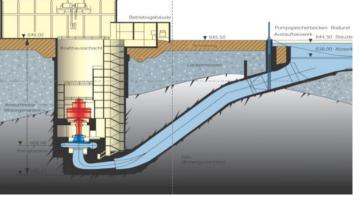
- Pumped storage is currently the most efficient and economical method for the integration of RES
- Hydropower contributes to a safe and affordable supply
- Storage power plants supports the energy transition in a renewable way
- Austria has an excellent reputation internationally with hydropower and corresponding know-how
- Austria offers not only current but especially energy services

Benefits of the Usual Pumped Storage



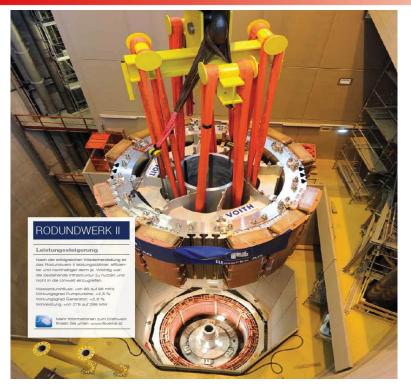
- Supplying power during peak demand
- Improving the power factory of the system
- Providing black start facility, voltage control, reactive power, inertia load
- "Smoothing" the load demand curve
- Task of a "fire brigade" for quick hydroelectric generation

Rodund II


Efficency Hydropower, Refurbihsment

Technical Data:

- Load Capacity:
- Discharge:
- Gross head:
- First time operation:
- Restart:

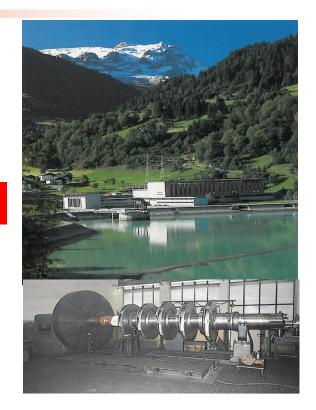


Rodund II

Efficency Hydropower

Restart: December 2011 **R&D:** Part load stabilization between 0 and 110 MW

Power Plant LÜNERSEEWERK


Efficency Hydropower, Refurbishment

Technical data:

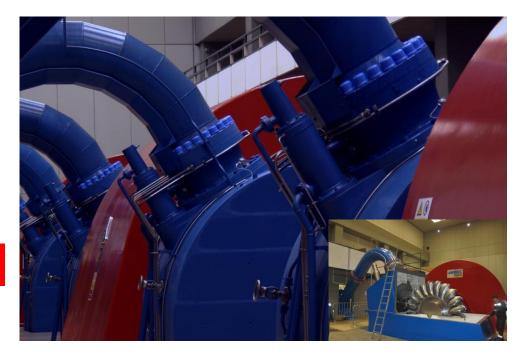
- constructed 1954 1958
- first time of operation 1958
- 280 MW 5 ternary units 974 m
- gross head
 - turbine mode 232 MW
- pump mode 224 MW
- energy / a 371 GWh
- pump storage 201 GWh

Refurbishing

Uprating - PHS Lünersee

Reservoir "Lünersee":

- Sea Level 1970 m
- Storage Capacity 78 Mio m³
- Energy Storage 260 GWh
- Max Daily Storage 5,4 GWh



Uprating – HPP Kops I (new runners, jets, housings)

technical data:

- Construction 1962 1969
- Commissioning 1968
- 3 units (turbine, generator)
- Gross head 780 m
- Turbine mode 247 MW => 276
- Energy/a 392 GWh

Thank you

Questions ? Don't hesitate to contact me <u>peter.matt@illwerke.at</u> www.illwerke.at

Execution of Construction Work

Site Section D

(main section, status quo)

Section D – ropeway for material transport - MS 1

Execution of Construction Work

EMC Kerala, Feb 2018

Execution of Construction Work

AG

Execution of Construction Work

Site Section D

(status quo) Section D – ropeway for material transport

EMC Kerala, Feb 2018

Pumped Storage Schemes & Role of Regulators

P. V. SIVAPRASAD

Director,

Kerala State Electricity Regulatory Commission

Regulatory Commissions

- CERC at the center
 - Powers to regulate centrally owned generating companies and companies having composite scheme for generation and sale of electricity in more than one State
 - To regulate inter-State transmission/Trading
- SERCs in the State
 - Powers to regulate intra-State generation, transmission and distribution
- CERC vis a vis SERCs
 - No hierarchical relationship, however, SERCs are to be guided by the principles of tariff determination specified by CERC
- Forum of Regulators-consisting of Chairpersons of CERC &SERCs for harmonization of regulation

Role of Regulators in Indian Power Sector

- Regulations
 - Tariff Regulations
 - Licensing Regulations Transmission, Distribution, Trading
 - GRID Code
 - Standards of service regulations etc.
- Procedural regulations
 - Conduct of business regulations
 - Payment of fees etc.
- Regulatory Orders
 - Determination of tariff
 - Generation,
 - Transmission and
- Real-time Operation related orders-UI, Grid security etc.
- Adjudication of disputes
- Open Access procedures
- Advisory role to the Governments
- Promoting RE

Provisions in the Tariff Policy 2016 regarding pumped storage schemes..

- One of the objective is to ' Promote Hydroelectric Power generation including Pumped Storage Projects (PSP) to provide adequate peaking reserves, reliable grid operation and integration of variable renewable energy sources.
- Tariff for electricity sold to DISCOMs through long term PPAs shall be determined by the CERCs / SERCs as the case may be.

Role of the SERCs as the Regulator in promoting pumped storage schmes

- Determination of Tariff for the electricity generated from PSP and supplied to DISCOMs
- Approval of power purchchase agreement to be entered into between the generator and DISCOMs.
- Ensuring safety and security of the grid.., especially in the present context of large scale integration of RE, with adequate electricity storage schemes.

Tariff Determination

- Based on the technical and financial parameters specified by the Commission through Regulations, based on cost plus principles. (Section 61 & 62 of the EA-2003).
- Components of Tariff
 - Interest on Debt
 - Return on Equity
 - Operation and Maintenance expenses
 - Depreciation
 - Interest on working capital
- Annual FC shall be born by the beneficiaries, and ultimately pass on to the end electricity consumers.
- The PSP can operate the plant as a merchant power plant.

Power purchase agreement with Distribution licensee

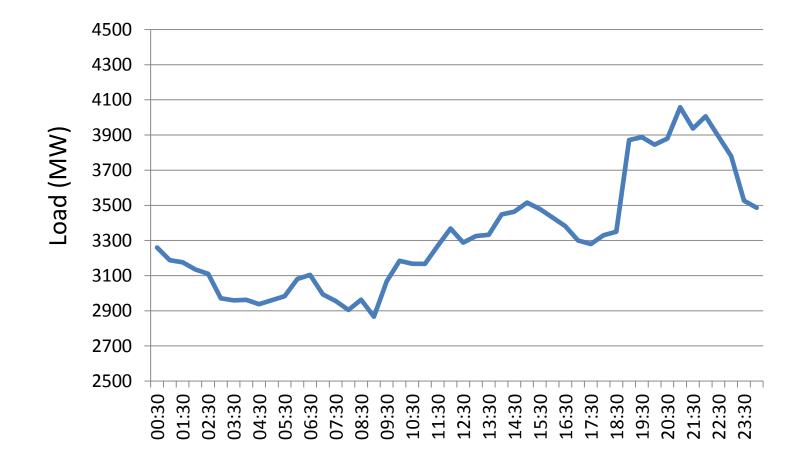
- Prior approval of the Commission is mandatory as per the provisions of the Electricity Act, 2003.(Section 86(1)(b) of the EA-2003.
- The Commission is duty bound to ensure that, quality electricity is supplied to the consumers at reasonable cost.

The Commission may consider the following while granting investment approval/ approval for PPA by the KSEB Ltd for PSS..

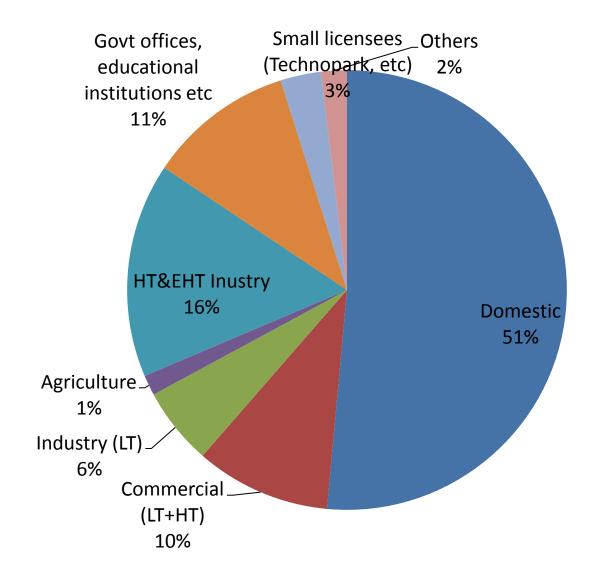
- Present features of the Kerala power system, its constraints, the consumer mix etc.
- What is the future growth of the electricity demand?
- Supply options available to meet the future demand and its impact on retail tariff.
- Whether the system requires a PSS or not, if so what capacity.
 - Quantify the benefit to the Kerala power system and also its impact on consumers.
 - How it can be utilized.

Kerala Power System

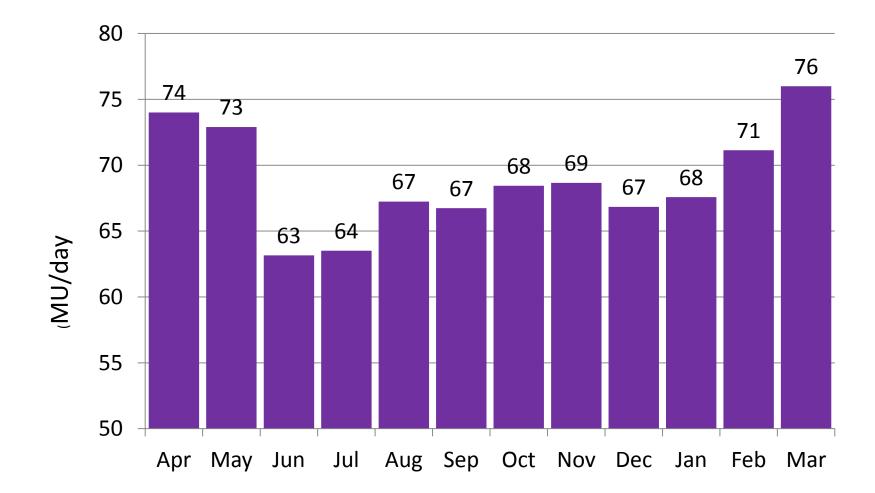
- Consumer strength- about 120 lakhs
- Daily consumption- Average -70 Million Units (Annual about 25500 MU)

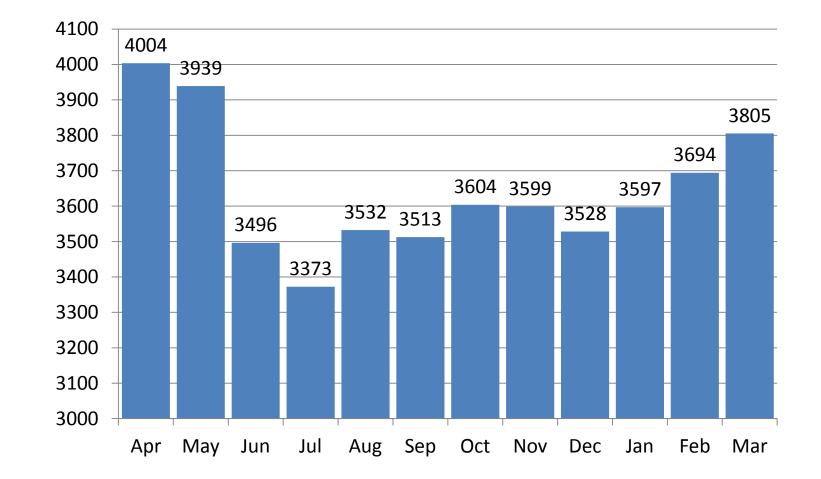

– Annual increase – about 6%

- about 1200 MU


Peak demand – about 4000 MW

Annual increase – about 250 MW


Daily Load Curve (Typical)


Consumption pattern

Monthly variation of Electricity Demand (MU/day)

Monthly variation of peak demand (MW)

Peak demand (MW)

How the electricity demand of the State is being met?

- Historically, till the early 80's, the entire demand is being met by internal hydro.
- In 90's, about 80% of the demand is being met by hydro and balance from thermal (Central Generating Stations).
- Now, about 75 % of the electricity requirement of the State is being met by procuring power from outside the State

			2017-18 (est)
Source	1990-91	2016-17	(normal monsoon)
Hydro (internal)	80.4%	18.0%	25.6%
IPP & Wind (internal)	0.0%	0.6%	0.6%
CGS (Outside the State)	19.6%	45.7%	43.5%
Traders & short terrm (Out side the State	0.0%	35.7%	30.3%

Own generation and Power purchase by KSEB Ltd

SI No	Particulars	Capacity	Capacity available	Annual energy availability
		(MW)	(MW)	(MU)
1	Hydro	2100	1650 to 1750	6500 to 7000
2	CGS (outside the State)	1700	1350	11000.00
3	IPPs (outside the State)	1415	1203	9905.98
4	Wind-IPPs	57		109.85
	Solar KSEB own including 50 MW plat at Kasargod	57.25		95.29
		5329.25	4203	27611.12

Renewable Addition Plan by the Central Government

Source	Capacity as on 31.07.2017		Capacity target for March-2022	
	(MW)	(%) of total	(MW)	(%) of total
Solar	13652	23%	100000	57%
Wind	32562	55%	60000	34%
Small Hydro	4390	7%	5000	3%
Biomass & MSW	8296	14%	10000	6%
Total	58900	100%	175000	100%

Renewable Purchase Obligation

Year	RPO PROPOSED as percentage of total consumption excluding hydro				
	Non-solar RPO	Solar RPO	Total		
	(%)	(%)	(%)		
2017-18	6.00	1.50	7.50		
2018-19	7.00	2.75	9.75		
2019-20	8.00	4.00	12.00		
2020-21	9.00	5.25	14.25		
2021-22	10.25	6.75	17.00		

Addl solar capacity required- about 1000 MW to meet the Solar RPO, will results in generation by 5.0MU/day during sunny days

RE sources in the State.. Issues and challenges

- Potential RE sources of the State
 - Small Hydro (capacity upto 25 MW)
 - Wind
 - Solar
- Infirm nature,
 - SHP and Wind Seasonal and generation limited to monsoon months.
 - Solar- generation limited to day time- maximum upto 6 hrs per day

- Low Plant Load Factor
 - Small Hydro- 30%
 - Wind 22%
 - Solar-19
 - KERLA SYSTEM LOAD FACTOR about 72%??
- Forecasting and scheduling threats, grid security & safety issues
- Very limited storage facility to absorb the variability of RE.

PSS is an effective energy storage solution..

- To cater the peak demand..
- To address the variability and infirm nature of RE..
 - Enhance the reliability of power generated from RE
- Optimum utilisation of the available sources and the electricity market..
 - Enhance the market value of electricity..
- Address the hydrology risk..

Commercial justification..

- Capital cost may be slightly higher..
- Additional electrical energy for pumping, which may increase the effective cost of the energy delivered..
- Overall per unit cost of electricity from PSS may be higher than conventional power..
- ToD pricing (energy charge during peak hours -6pm to 10pm is 50% higher). ToD mandatory for
 - All HT&EHT consumers
 - LT- Industrial consumers having connected load above 20 kW

Recommendations of the Standing Committee on Energy (2015-16) Sixteenth Loksabha

Pumped Storage System

2.6 The Committee note that 96,524 MW capacity of pumped storage scheme has been identified in the country. Out of this, capacity of 4,785.6 MW is under operation and 1,080 MW is under construction, whereas 1,000 MW projects DPR are prepared and submitted to CEA. The Committee find that development of pumped storage scheme in the country is at a rudimentary stage and its present utilization against the total potential is meager. Considering the vast network of electricity grid in the country and the quantum of electricity demand, it is not difficult to gauge the range of fluctuation in power demands. Pumped storage schemes are meant for storing energy and using at times when demands for electricity soars. Hence, pumped storage scheme will be quite beneficial for developing ancillary power market and in meeting sudden high demands of electricity. The Committee, therefore, recommend that due attention should also be given to develop identified pumped storage schemes in the country.

THANKS

IMPACT OF PUMPED STORAGE PLANT on STRESSED POWER SYSTEMS

-A case study on Kerala Power System

Outline

- Introduction
- Stressed Power System
- Major Challenges in the Operation of Stressed Power Systems
- Energy Storage is beneficial
- Why Pumped storage ?
- Kerala power system at a glance
- Features of Kerala Power System
- Main problems faced by Kerala power System
- Cost of power purchase
- Importance of PSP in Kerala System
- Study of Commercial Impact of PS
- Optimal Generation scheduling problem
- Demand & supply of the system
- Mathematical Formulation Problem
- Simulation results
- Scope of mixed pumped storage operation
- Additional Capacity determination
- Conclusion

Introduction

- Economic operation of power system
- Optimal utilization of natural resources
- System wise study is necessary

Stressed Power System

- Insufficient own resources
- Large variation in peak and off peak power demand
- Substantial short term power purchase
- High impact of fluctuations in power market on system operation
- Increasing addition of renewables

Major Challenges in the Operation of Stressed Power Systems

Economic operation of Power system is affected by

- Change in market structure in the deregulated environment of power system operation
- Evolution towards more renewable energy sources like solar, wind etc.
- Uncertainty in amount of power availability
- Uncertainty in time and duration of availability
- Fluctuations in market price

Energy storage will have a strong impact on the operation of such systems

Energy Storage is beneficial

- Load factor of the system can be improved ensuring better utilization of own resources
- Market price variations can be effectively utilized
- Integrated operation of renewables like wind and solar is possible
- Overall economy of system operation can be improved
- Reliability of the system can be enhanced

Why Pumped Storage ?

- Most economical large scale storage
- High cycle efficiency (0.75-0.85)
- Quick start and stop
- Operational simplicity
- Less maintenance
- Long life
- Better utilization of hydro potential

Impact of pumped storage on Kerala power system

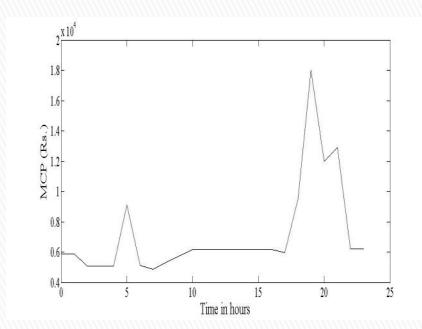
- A case study

Kerala power system at a glance

- > Installed Capacity:
 - Hydel :70%
 - Thermal :30%
- » Peak Deficit :12%
- > Average energy availability from hydel :40%

The dominance of hydro is not reflected in the consumption

Features of Kerala Power System


- Relatively poor energy resources (absolutely no fossil fuel reserves)
- Dependency on Monsoon (more than 70% hydro)
- Adverse consumer mix(nearly 80% are domestic consumers to whom energy is sold at subsidized price Rs 1.9 as against Rs 4.6)
- Low load factor (evening peak is almost double that of base load, lowest in Southern grid)
- High cost of thermal power (the increase in demand is met by costly power purchase liquid fuel stations)
- Adverse LT-HT ratio (6:1 against 1:1as per norm which has adverse effect on distribution installation & distribution loss)

Main problems faced by Kerala power System

- Peak Power deficit
- The hydel source is monsoon dependant and hence availability is limited for two thirds of an year
- Geographical and environmental restrictions prevent construction of new stations
- Substantial power purchase mainly due to peak power deficit

Market price

- Highly variable in nature, beyond the control of the utility
- Cost is high when demand is high and is less during off peak
- A deciding role in economic operation of the system

Storage is the solution

Purchase and **store** when energy is **cheaper** (off-peak load) and **release** the same when **peak demand** appears

Importance of PSP in Kerala System

- Abundance of hydro potential. Effective utilization of hydro resources
- Load factor of the system can be improved ensuring better utilization of other resources
- Increasing Renewable penetration cause significant fluctuation in market price. Need a quick responding storage option
- Economy can be improved by energy arbitrage
- Reliability of the system can be increased

Study of Commercial Impact of PS

Problem Formulation

- The commercial impact of PSP is evaluated from the optimal generation schedule with and without a fictitious PSP
- Annual saving is obtained by comparing both the schedules assuming an installation cost of 4 corers/MW for the PS plant
- Optimal capacity of the PSP corresponding to maximum savings is found by assuming different capacities for the plant

Optimal Generation scheduling problem

• **Objective**: Minimize the total operating cost for the day

Constraints:

- Demand-Supply balance
- Power& Energy availability from Hydro plants for the day
- Power & Energy availability from CGS
- > Operational constraints on the LF plants eg.
 Combined cycle operation
- Power purchase limit during peak hours
- Energy availability from purchase for the day.

Demand & power supply

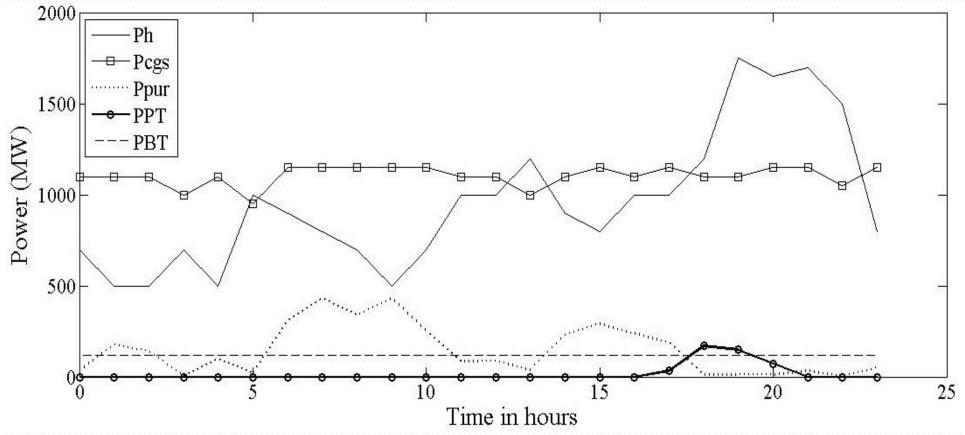
System demand is met by
 hydel stations
 allocation from central generating stations,
 liquid fuel stations
 power purchase from Traders/power exchanges

Scheduling is done by load dispatch centre on merit order basis. Merit order is prepared on the basis of energy cost/MWhr.

Mathematical formulation of the Problem

- The optimal scheduling problem is formulated as an integer programming problem
- Solved using a MILP/LP solver GLPK
- Optimal schedule is prepared for the existing system and with PSP

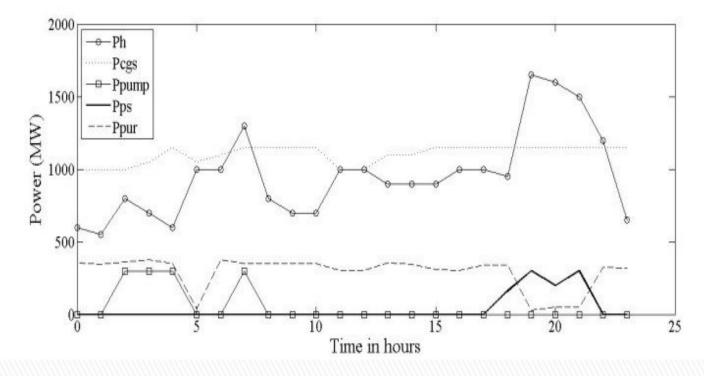
Optimal scheduling


- Objctiv Funtion
- $Min C = \sum (C_C.P_C(i) + C_TP_{BT}(i) + C_{PUR}(i) P_{BPUR}(i)) +$ $\sum (C_HP_H(j) + C_{PUR}(j)(P_p(j) +$ $\sum (C_TP_{PT}(k) + C_HP_H(k) + C_{PS}.P_{PS}(k))$
- Sub to:

 $\Sigma P_{c}(t) \leq P_{ct} max$ $\Sigma P_{H}(k) = P_{Ht}$ $\Sigma P_{H}(j) \leq = P_{H} max$ $P_{P}(j) = P_{max}$ $P_{PSmax} = P_{max}$ $P_{PT}(k) < = P_{PT}max$ $\Sigma P_{RT}(i) = P_{RTt}$ $P_{PUR}(j) > = P_{PURmin}$ $P_{PT}(k) + P_{C}(k) + P_{H}(k) + P_{PS}(k) + P_{PUR}(k) = P_{I}(k)$ $P_{RT}(j) + P_{C}(j) + P_{H}(j) + P_{PIIR}(j) - P_{P}(j) = P_{I}(k)$ $\Sigma P_{PS}(i) \leq \Sigma Pp(i) \eta$ $E_{U}(k) = E_{U}(k-1) - P_{PH}(k) - P_{PS}(k)$ $E_{U}(j) = E_{U}(j-1) - P_{BH}(j) + \eta P_{D}(j)$ $E_{I}(j) = E_{I}(j-1) - \eta P_{P}(j)$ $E_{U}(i) > = E_{Umin}$ $E_U(i) < = E_{Umax}$

 $E_{L}(i) \ge = E_{Imin}$ $E_{L}(i) < = E_{Lmax}$ $E_{U}(0) = E_{Ui}$ $E_{Li}(0) = E_{Li}$

The above problem is solved first for the existing system and then with a PS plant. The integer programming problem is solved using free software package GLPK which contains an MIP/LP solver.

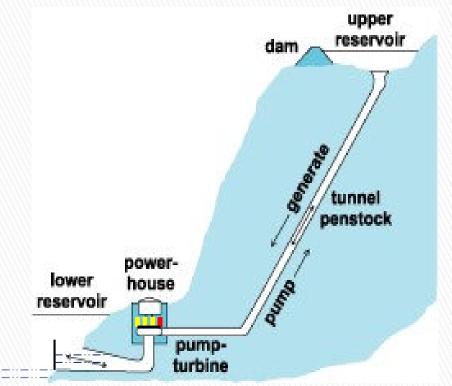

Simulation & Results without PSP

 A costly liquid fuel station running as base load plant just because of non availability of sufficient power to meet the critical peak demand

Pushes the operating cost of the system to a high value

DA generation scheduling results with a grid energy storage

 Revised schedule with a fixed capacity pumped storage plant


Costly LF plants are replaced by the PS plant

A substantial saving of 1.14 Cr. in operating cost per day

Scope of mixed pumped storage operation -An empirical study

Concept of Mixed Pumped Scheme (MPSS)

 Conventional Hydro plants retrofitted with a PS unit in the power house and a suitable sump in the tail race

Advantages of MPSS over PSS

Less capital investment

Minimum environmental impact

Development of MPSS

 Feasible in existing hydro plants with significant spillage during monsoon season and extra storage capacity during summer season

 Proposal is to bring an additional capacity which is ensured year round

Additional Capacity determination

 Step1: Classification of reservoir data* based on storage level

Category	Storage (% of FRL)	Reservoir status
1	80-100	Chance of spillage
2	50-80	Safe level
3	<50	Limited storage

* Plant capacity is 48MW (4x8+16) and data analyzed for the period 2006-10

Contd..

Step2: Additional capacity determination

Category

2

3

Capacity

- Capacity (P₁) determined from average spill/day during the season
- Control the off peak generation so that extra peak capacity (P_2) can be introduced based on the inflow rate of the season
 - Pumped storage operation whose capacity (P_3) is not calculated in this study

Calculations

• P_1 in MW=<u>S.1000</u>, S is the av.spillage in million units 24

• P_2 in MW=<u>I.1000</u>, I is the total inflow for p number of hrs and p the no.of peak hrs p

 Determination of P₃ requires a detailed study which is beyond the scope of this work

Results

Category	Additional capacity	Mode of operation during the season	% Duration of operation in an year
1	16	Round the clock generation	30
2	12	Peak hour generation	15
3	_	PS operation	55

Unit size & Sump Capacity

- Unit size is selected as 8 MW considering
 - the possibility of FL operation in all the 3 seasons
 - the availability of the unit in case of a breakdown

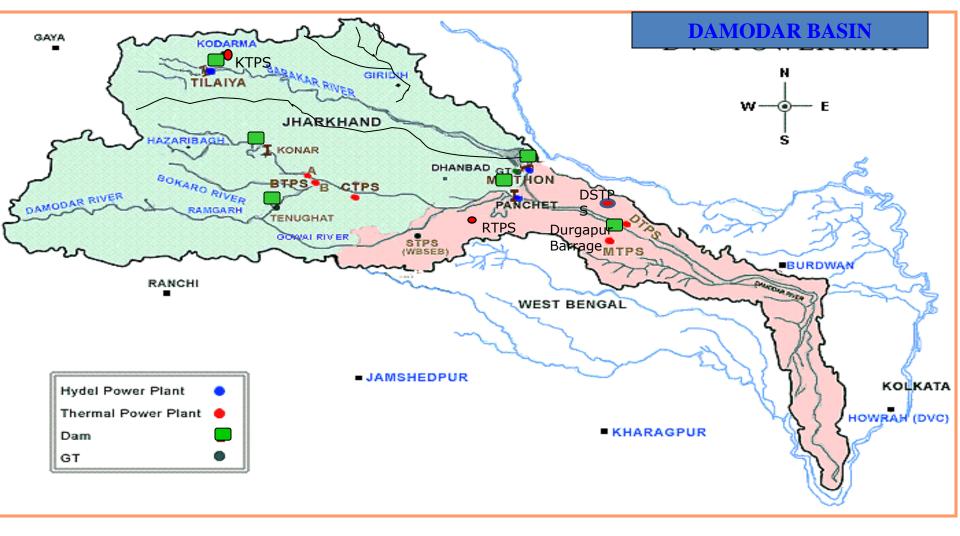
Sump capacity is estimated as **0.185MCM** which is necessary for 4 hrs of peak load (for the test system) generation

Conclusion

- Preliminary study shows the viability of PS plant in Kerala Power System operation
- Extra hydro potential is available in existing plants which can be easily tapped out for Energy Management
- MPSS is very effective in improving demand response
- The proposed method is extremely simple for the system managers to adopt and implement

THANK YOU

DVC: Flood Control, Irrigation, Water Supply, Drainage and Power Generation


• Original Plan of DVC: For a Century-long effort of taming the highly destructive turbulent Damodar river during floods & utilizing its huge water resources, the Planners proposed a scheme of construction of 7 multipurpose Storage dams at Konar, Aiyar, Panchet, Bokaro, Tilaiya, Deolbari & Maithon with a Barrage & canal network system.

DAMODAR VALLEY CORPORATION

- CAME INTO EXISTENCE ON 7TH JULY 1948 BY AN ACT OF PARLIAMENT 'DVC ACT (XIV), 1948', WITH PRIME CORPORATE OBJECTIVES TO FULFILL.
- AN AUTONOMOUS BODY OF CENTRAL AND THE STATE GOVERNMENTS OF WEST BENGAL AND BIHAR (Now JHARKHAND).
- FIRST MULTIPURPOSE INTEGRATED RIVER VALLEY PROJECT OF INDEPENDENT INDIA.

DVC : PRIME CORPORATE OBJECTIVES

- Promotion and operation of schemes for flood control in the Damodar River and its tributaries.
- Promotion and operation of schemes for irrigation, water supply and drainage.
- Promotion and operation of schemes for the Generation, Transmission and distribution of electrical energy, both hydro-electric and thermal.
- Promotion and control of navigation in the Damodar river and its tributaries and channels if any.
- **Promotion of afforestation and control of soil erosion in the valley.**
- Promotion of public health and the agricultural, industrial, economic and general well being in the Damodar Valley and its area of operation.

PERFORMANCE OF DVC in 58 YEARS of OPERATION (From 1959 to 2017): > FLOOD MODERATION THROUGH DVC DAMS

Moderation of Some Major Floods

Period	Combined Peak Inflow (In cusec)	Combined Peak Outflow (In cusec)	Flood Moderation (In cusec)
Oct. 1959	6,23,000	2,88,000	3,35,000
Oct. 1961	5,16,000	1,60,000	3,56,000
Oct. 1973	5,88,000	1,75,000	4,13.000
Sept. 1978	7,74,000	1,63,000	6,11,000
Sept. 1995	6,19,000	2,50,000	3,69,000

- _____
- Note: If the 1978 flood was allowed to pass without any moderation from DVC dams, It would have generated a flood peak of 11,80,000 cusec at Durgapur Barrage, which is more than the total design flood of DVC system i.e. 10,00,000 cusec and a total devastation could not be avoided.

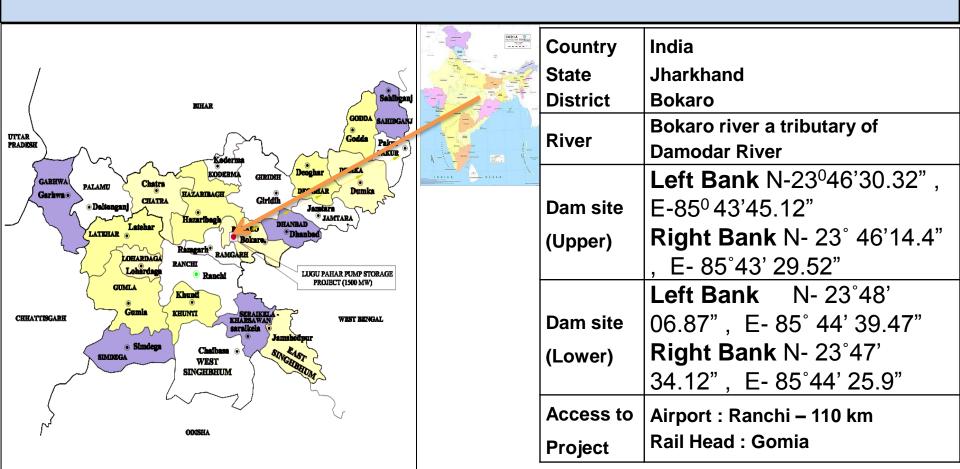
IRRIGATION BY DVC WATER

- 3 crops in a year- Kharif (Monsoon), Rabi (Winter) & Boro (Summer) from DVC water.
- Supplying 1150 MCM of water on an average for Kharif Irrigation- Area extended from 75000 Ha to 3,34,282 Ha.
- > Supplying 86 MCM of water for Rabi Irrigation
- Supplying 300 MCM of water on an average, for non-committed Boro Irrigation
- Value of the Crop produced by DVC water has been estimated to about Rs. 500 to 700 crores annually.

MUNICIPAL & INDUSTRIAL WATER SUPPLY BY DVC

- Supplying water about 555 MCM water to 175 Municipal & Industrial agencies from Ranchi to Panagarh.
- Main Industrial consumers- Steel plants, Thermal Plants, Railways, Collieries & washeries, Fertiliser Plants etc.
- Main Domestic Consumers Jharia Water Board Dhanbad City, Asansol, Ranigunge & Durgapur Municipalities etc.

POWER GENERATION AND DVC

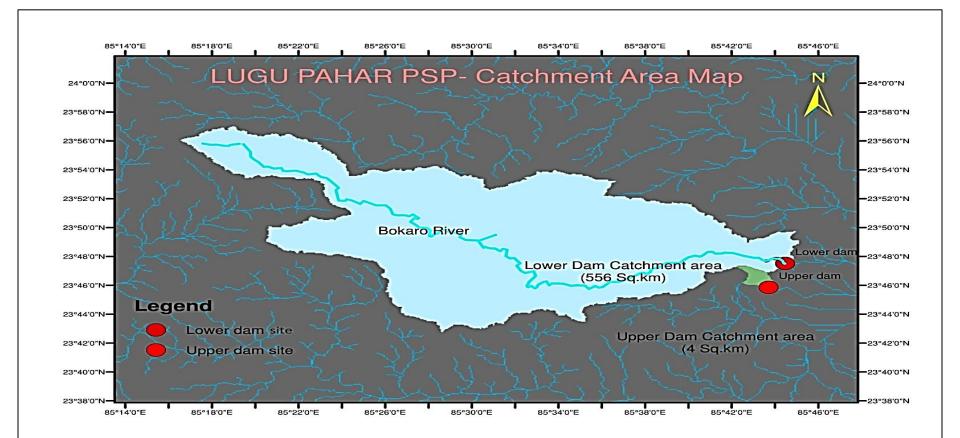

- Total Present Capacity of DVC is 9305.2 MW Thermal & Hydel both.
- Total Thermal Power Generation Capacity of DVC- 7770 MW
- > Thermal Power capacities of JV companies of DVC- 1388 MW
- > Total Hydel Power Generation Capacity- 147.2 MW
- Main consumers Steel plants, Railways, Coal Industries, State Electricity boards of West Bengal, Jharkhand, Delhi, MP, Karnataka, Kerala, Punjab, Haryana etc.

> One of the major power generating units of Eastern India.

History of Pump Storage Projects in DVC

- DVC identified some "Hydel Pumped Storage Schemes" within the Valley area in 1970s.
- In 1978, DVC started planning of a 600 MW Hydel Pumped storage scheme at Lugu Pahar area, near Gomia in the state of Jharkhand.
- CEA advised DVC to proceed for a pumped storage scheme upto 4200 MW at the same location, considering the topographical features & availability of water.
- DVC prepared a preliminary report in 1981 for a pumped storage scheme of 3000 MW capacity at Lugu Pahar area.

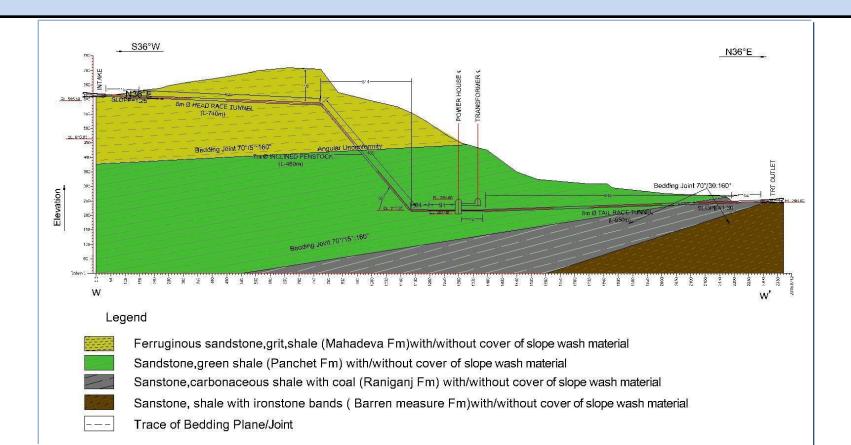
PROJECT – LOCATION & BACKGROUND



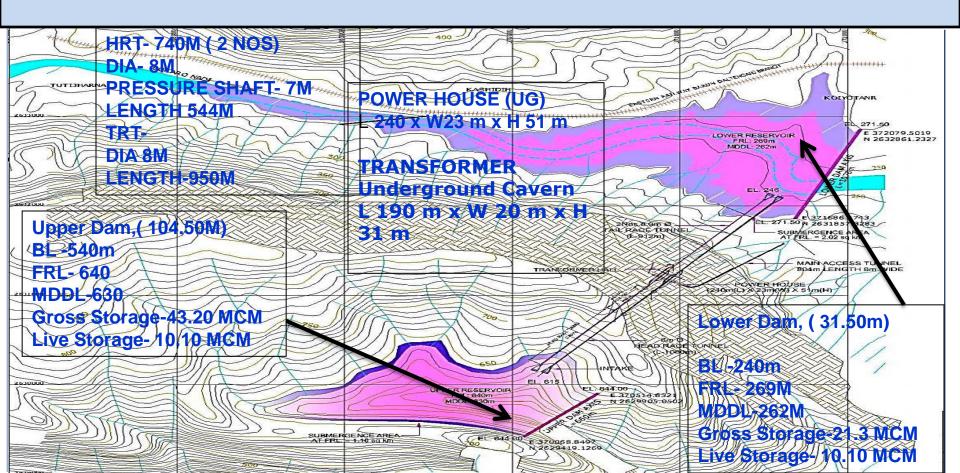
under the Ministry of Power, Govt. of India

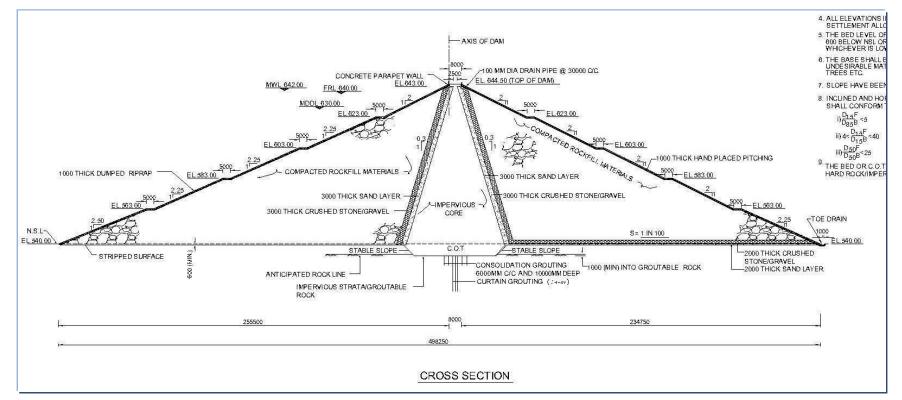
.

HYDROLOGY

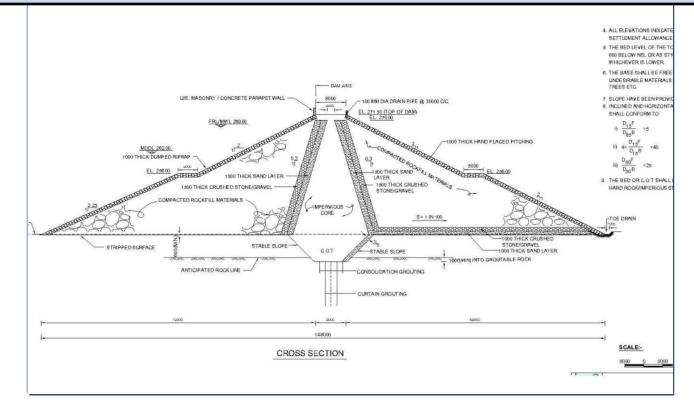

SITE VISIT

Joint site visit has been conducted by DVC and WAPCOS officials on 17th August 2017.




LAYOUT WITH GEOLOGICAL STUDIES

PROJECT LAYOUT



DRAWINGS- UPPER DAM

C/S UPPER DAM

DRAWINGS-LOWER DAM

C/S LOWER DAM

RESRVOIR SIMULATION-RESULTS

- The Upper Pond with FRL at 640 m and MDDL 630.64 m has a live storage capacity of 10.10 mcum.
- The head during generating mode would vary from a minimum of 346 m to a maximum of 364m. The discharge during generating cycle caries from 440 cumec to 480 cumecs.
- The FRL of lower Pond is 269 m and MDDL 262 m
- The head during pumping cycle varies from a minimum of 352m to a maximum of 368m.
- > The ratio of Maximum to Minimum head is **1.05**.
- Pumping duration during off peak is 7.4hours.
- > The pumping energy requirement is **11000 Mwh**.
- \succ The cycle efficiency is **81.82%**.

ELECTROMECHANICAL ASPECTS

Туре	Francis type, vertical shaft reversible pump-turbine
Number of unit	Six (6) units
Rated Turbine Head	362 m
Turbine Output at Rated Head	253 MW
Rated Pump Head	378 m
Pump Input at Rated Head	285 MW
Rated Turbine Discharge	79.00 m ³ /s
Rated Pump Discharge	71 m³/s
Synchronous Speed	333.3 rpm

ELECTROMECHANICAL ASPECTS

Generator-Motor			
Туре	Three (3) phase, alternating current synchronous, generator-		
	motor, vertical shaft, rotating field, enclosed housing, rim-duct air-		
	cooled and suspended type		
Number of unit	Six (6) units		
Rated Capacity	Generator; 250 MW , Motor; 300 MW		
Rated Voltage	18.0kV		
Rated Frequency	50 Hz		
Rated Speed	333.3 rpm		
Over Load Capacity	110 % rated capacity		

CONCLUSIONS

- The project involves <u>minimum civil works</u> with availability of local construction material.
- No geological surprise is envisaged. Geological setup is conducive for underground works.
- No interference with hydrological regime of the river project being close loop Pumped storage project.
- Minimum land requirement of 496 Ha.
- > The majority of land is **forest and minimum private land is** envisaged.
- > No **R&R issues seems to be** involved.

CONCLUSIONS

- The per MW cost is **2.98 Cr.** Only.
- The generation per ha of forest land is 10.2 Mu /Ha which is much more than the required 2 Mu /Ha as per latest Guidelines. Hence eligible for preferential consideration.
- DVC and state of West Bengal ,Jharkhand do not have realisable Hydro Potential of this Scale. Hence, Lugu Pahar Pumped Storage is the only feasible alternative available.
- West Bengal has already constructed Purulia PSP(900 MW) and Turga PSP(1000 MW) is now under pre-construction. Other states are also going for PSP in an accelerated manner.
- In view of mandatory large injection of Renewables , DVC needs advance planning to integrate it.
- Considering the over all trend of generation planning and demand , DVC would be needing source to generate peak power to improve Hydro: Thermal Mix and provide much needed balance to renewable in year 2025-26.
- Lugu Pahar can address all above issues .
- PFR Establishes that scheme has merits for detailed Investigation and preparation of DPR.

hank you

Overview of Pump Storage Plants

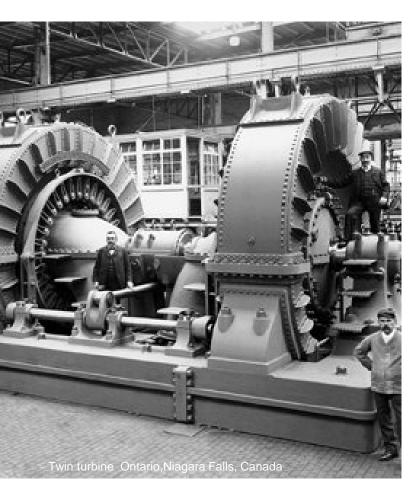
India, 2018-02-09/08

VOITH One of the Biggest Family-Owned Companies in Europe

1867

Johann Matthäus Voith 1803 – 1874 Friedrich Voith 1840 – 1913 Walther, Hermann and Hanns Voith

Hanns Voith


1971

All shares are owned by the Voith family.

Management and Supervisory Boards are staffed by external executives.

150 years experience in hydropower

1873	First Voith Francis turbine
1903	First Pelton turbine
1912	Niagara Falls, Canada: Twin Francis turbines with 12 MW output
1934	Pedreira, Brazil: World's first reversible pump-turbine, 5.3 MW output

Global Projects

Total Number of Powerhouses with Voith Hydro Participation: 6,730

Source: Go2Hydro (1900 - 2011-20-04)

VOITH

Voith Hydro - Global Locations

North America

York (PA)	USA	
Chattanooga (TN)	USA	
Springfield (OR)	USA	
Mississauga (ON)	Canada	
Montreal (Brossard, QC)	Canada	
Granby (QC)	Canada	
Ciudad de Mexiko	Mexico	
	Chattanooga (TN) Springfield (OR) Mississauga (ON) Montreal (Brossard, QC) Granby (QC)	Chattanooga (TN)USASpringfield (OR)USAMississauga (ON)CanadaMontreal (Brossard, QC)CanadaGranby (QC)Canada

Asia

Shanghai	China
Noida	India
Vadodara	India
Kawasaki	Japan
Seoul	Korea
Kuala Lumpur	Malaysia

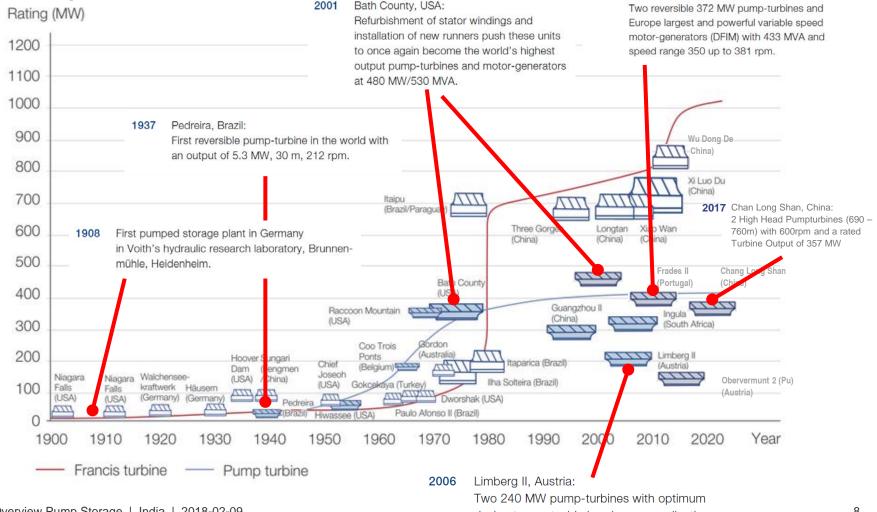
Europe

	Heidenheim	Germany
	St. Pölten	Austria
	St. Georgen	Austria
	Tolosa (Ibarra)	Spain
	Cinisello Balsamo (Milano)	Italy
•	Oslo	Norway
	Trondheim	Norway
	Gamle Fredrikstad	Norway
	Västeras	Sweden
	Pilsen	Czech
	Ankara	Turkey
	Moscow	Russia
	Podgorica	Montenegro
	Bukarest	Romania
	Trebisov	Slovakia

Latin America

São Paulo	Brazil
Manaus	Brazil
Lima	Peru
Santiago	Chile
Cuenca	Ecuador
Medellín	Columbia

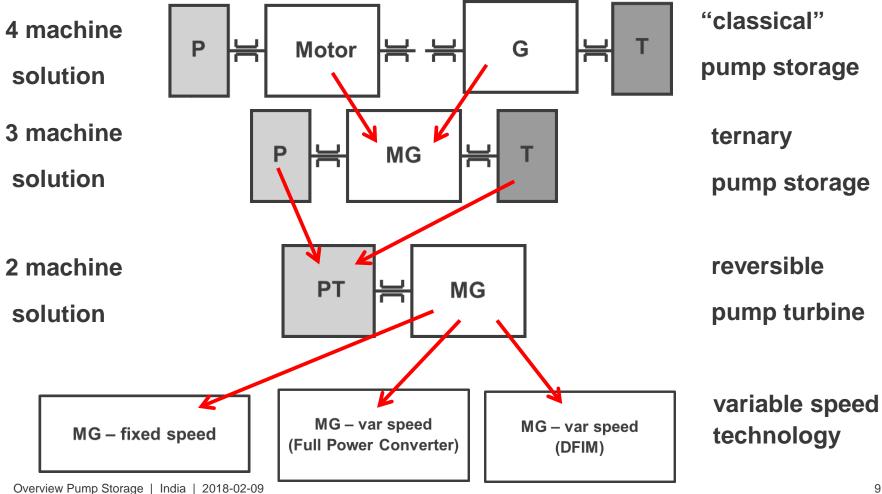
VOITH


Voith Hydro Presence in India

Pump Storage Concept

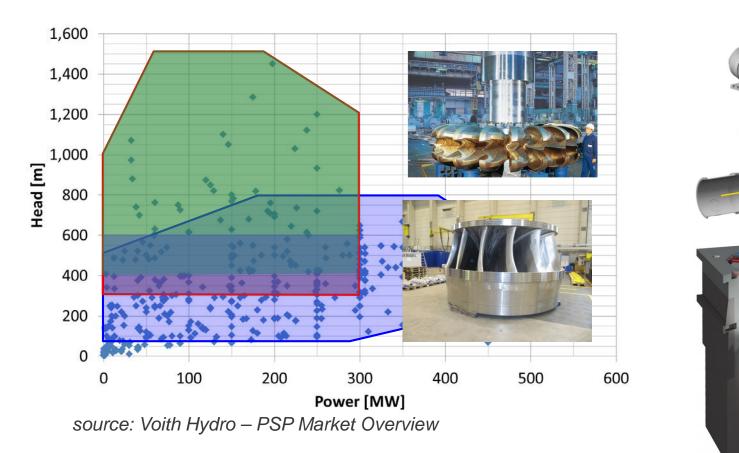
VOITH

Development of power outputs for Francis and **Pump Turbines** Frades II, Portugal: 2010



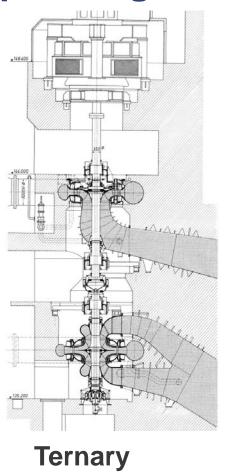
Overview Pump Storage | India | 2018-02-09

design to meet wide head range application.

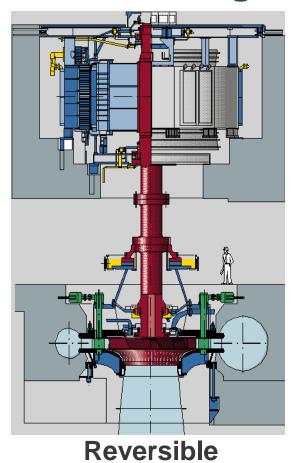


Pump Storage Plants – Development of Power **Unit Arrangement**

Application areas of different solutions for the hydraulic machine with respect to head and power



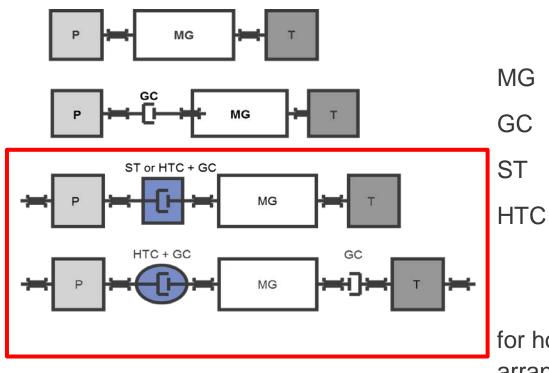
Power Unit Concepts


	MG – fixed speed	MG – var speed (Full Power Converter)	MG – var speed (DFIM)
PHMGHPe up to 1500m or more	application for high heads / fast mode changes	-	-
PHMGHFT up to 600m	fast mode changes	-	-
PT MG up to 800m Overview Pump Storage India 2018-02-09	most common application in the past	mainly for grid stabilization (low power)	mainly for grid stabilization (high power)

VOITH

Pump Storage Plants – Turbine Arrangement

Pump / Turbine

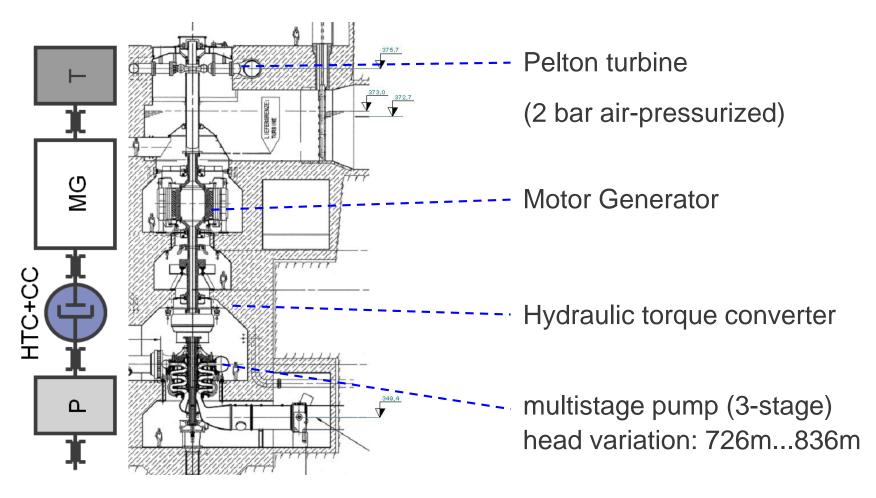

Pump Turbine

Ternary Units

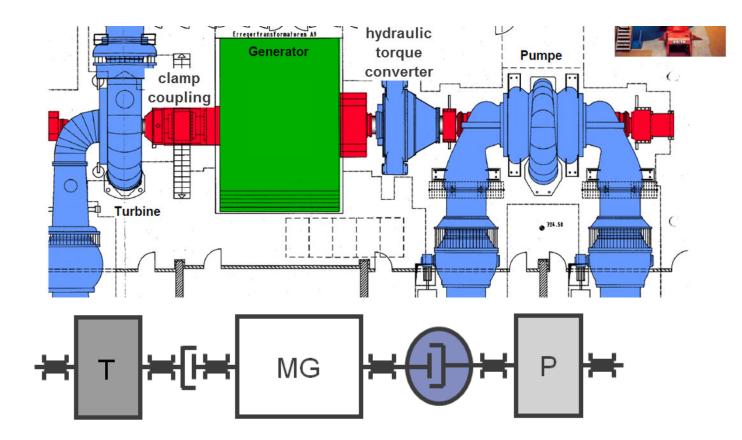
52 11 5

1. Unit Arrangements

Possible configurations

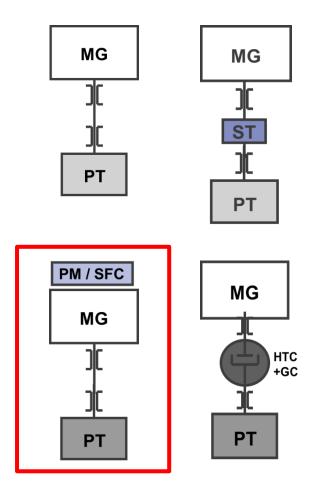

- IG Motorgenerator
 - Gear coupling
 - Starting turbine
 - C Hydr. torque converter

for horizontal and vertical arrangement


Main components of a vertical ternary unit with a Pelton turbine (Kops II, Austria)

Ternary unit arrangement with a horizontal shaft configuration

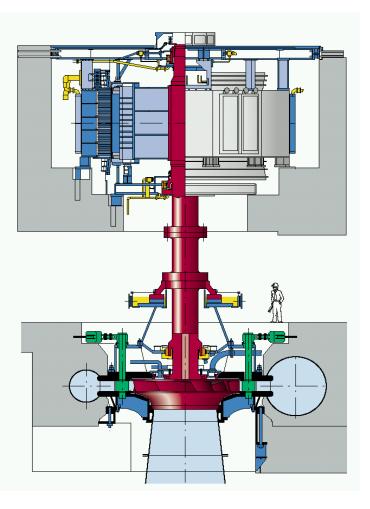
(Wehr, Germany) 4 x 227 MW T/ 4 x 245 MW P



Reversible Pump Turbines

PSW La Muela II (SP 80 km far away from Valencia), 852 MW, under construction

1. Unit Arrangements


Possible configurations

- MG Motorgenerator
- GC Gear coupling
- ST Starting turbine
- HTC Hydr. torque converter
- PM Pony Motor
- SFC Static Frequency Converter
- PT Pump Turbine

for horizontal and vertical arrangement

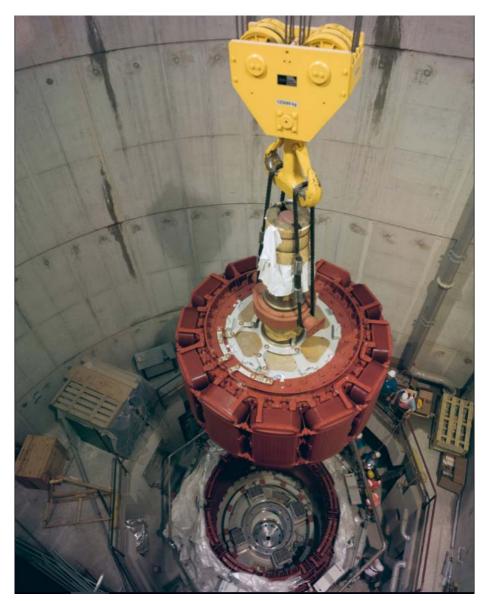
Conventional Reversible Unit (PT + MG)

- Typical of existing fleet in world today
- Two rotating directions
- Power control in turbine mode only
- Load range for generation: 50% - 100% power.
- Input cannot be controlled in pump mode
- Hydraulic circuit possible in case of 2 units (1 unit operates as pump 1 unit operats as turbine)

Arrangement of machines: comparison P+T/PT

Type of machine	P ⊨ MG ⊨ T	MG T PT
Investments		¢
Space requirements		¢
Efficiency	¢	
Setting	¢	
Transition time: $P \Rightarrow T / T \Rightarrow P$	(with HTC)	
Hydraulic short circuit	¢	
High heads	¢	
Operation costs		¢
Technical risks		¢
Maintenance efforts		¢

Specific Pump Features


Verbund VOITH

/OITH

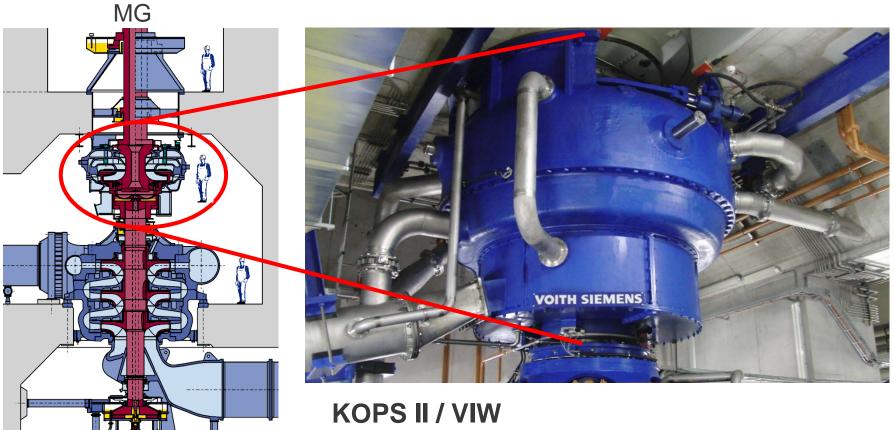
1P

PSP Features

- Hydraulic Torque Converter
- Start Up" Pump Mode
- Black Start Back to Back
- Servo Motor Control
- Runner Removal
- Variable Speed

VOITH

PSP Features


- Hydraulic Torque Converter
- "Start Up" Pump Mode
- Black Start Back to Back
- Single Servo Motor Control
- Runner Removal
- Variable Speed

VOITH

Hydraulic Torque Converter

3 - Stage Pump + Torque Converter

Hydraulic Torque Converter - References

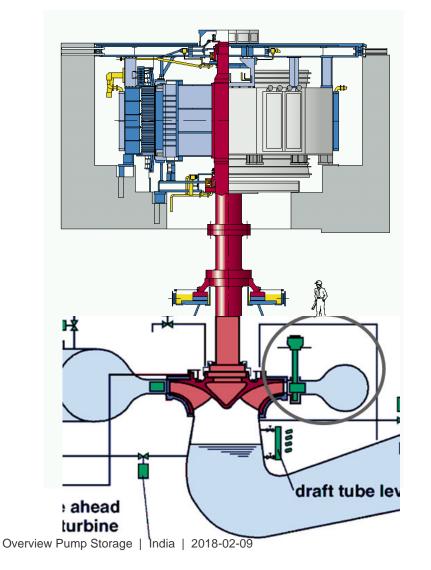
Plant	units	head	speed	pump input	converter	year
		[m]	[1/min]	[MW]	[MW]	
Lünersee	5	1000	750	43	33	1954
Säckingen	4	410	600	70	40	1964
Roßhag	2	690	750	52	31	1967
Hornbergstufe	4	640	600	248	150	1970
Malta	2	1100	500	144	87	1973
Häusling	2	725	600	170	96	1982
Kops 2	3	840	500	165	90	2007

HTC for Obervermunt II project is under construction

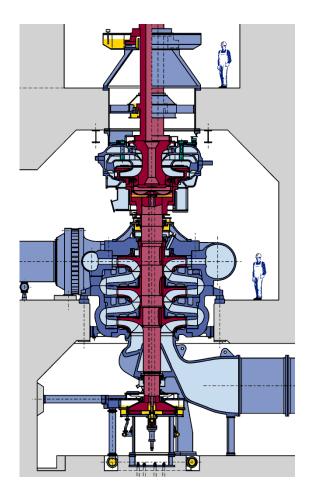
Advantages of the hydraulic torque converter

- Very short startup time of the storage pump (soft start + no air in the waterways especially in multi stage pumps)
- The consumption of electricity starts already with the filling stage of the hydraulic torque converter, in about 10 seconds 60% of the storage pump power are suitable.
- Minor no-load losses of the hydraulic torque converter (< 0,05 % of the rated power) compared to a connected starting pump
- Self-control into synchronisation, no additional speed control is required.
- Lowest water consumption / water is taken from the tail water side,
 i.e. no storage water from the upper reservoir (< = > startup turbine).
- Very good operational experience since 1954.
- Voith Hydro is the only company with references.

PSP Features


- Hydraulic Torque Tonverter
- "Start Up" Pump Mode
- Black Start Back to Back
- Servo Motor Control
- Runner Removal
- Variable Speed

VOITH

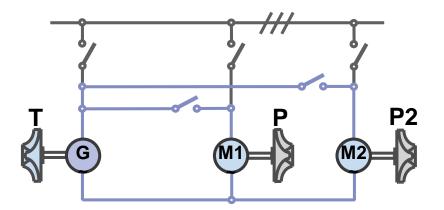

Required Power to "start up" in Pump Mode

- Required power to
 rotate the runner in
 water at rated speed
 about 20% of rated
 pump input
- Required power to rotate the runner in air at rated speed about 3...5% of rated pump input (blow down equipment necessary)

Required Power to "start up" in Pump Mode

- Required power to rotate the runner in water at rated speed about 60% of rated pump input
- Start in air not technically feasible (large volume to be blow down at a high pressure level)

"Start Up" in Pump Mode - Devices

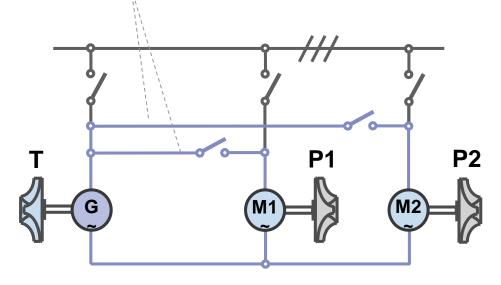

	pump "in water"	pump "in air"	single stage	multi stage
Starting Turbine	yes	yes	yes	yes
Pony Motor	no	yes	yes	no
SFC	no	yes	yes	no
HTC	yes	yes	yes	yes

Common Practice:

Single stage pumps / reversible Pump turbines → in air by SFC multi stage pumps → in water by HTC

PSP Features

- Hydraulic Torque Tonverter
- "Start Up" Pump Mode
- Black Start Back to Back
- SCO Mode
- Single Servo Motor Control
- Runner Removal
- Draft Tube Gates
- Variable Speed



VOITH

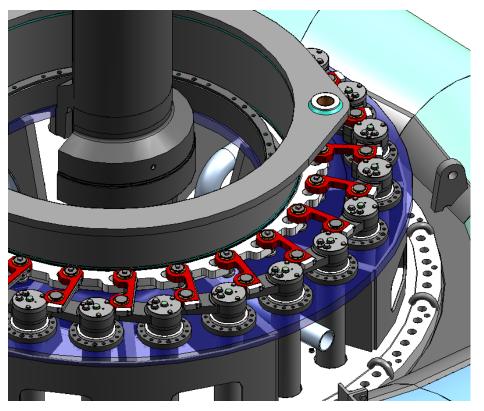
Start Up in Pump Mode - Back to Back

P1 and P2 can be started by the turbine T one by one using dedicated electrical connections between the motor-generators since the frequency during the start-up is different from the grid frequency.

Full-frequency starting: The motor of the pump to be started gets excited during the standstill and after starting of the runs synchronically with the generator.

Partial-frequency starting: At first the motor gets started asynchronically and after reaching the generator's speed it is excited and runs synchronically with the generator.

PSP Features

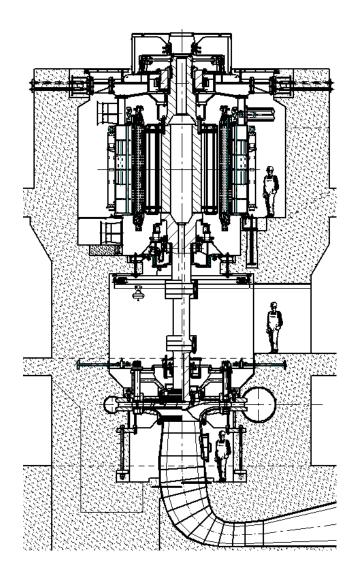

- Hydraulic Torque Tonverter
- "Start Up" Pump Mode
- Black Start Back to Back
- Servo Motor Control
- Runner Removal
- Variable Speed

Project Details – Distributor Mechanism

Standard kinematics with operating ring

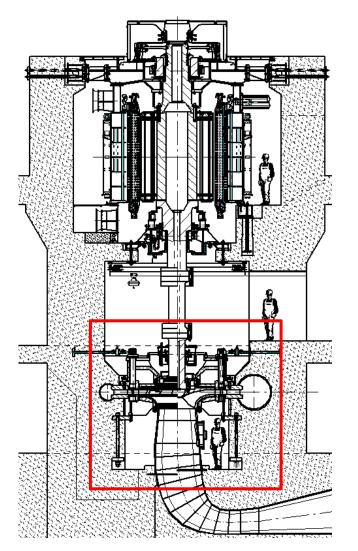
Individual Servomotors

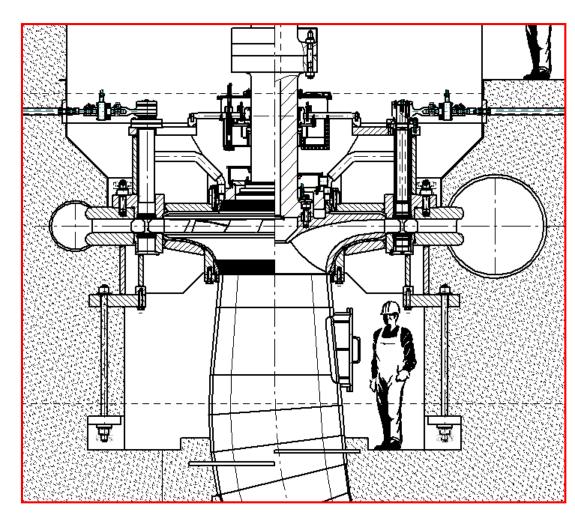
Project Details – Distributor Mechanism


Individual Servomotors offer several advantages compared to standard kinematics with operating ring, links and levers.

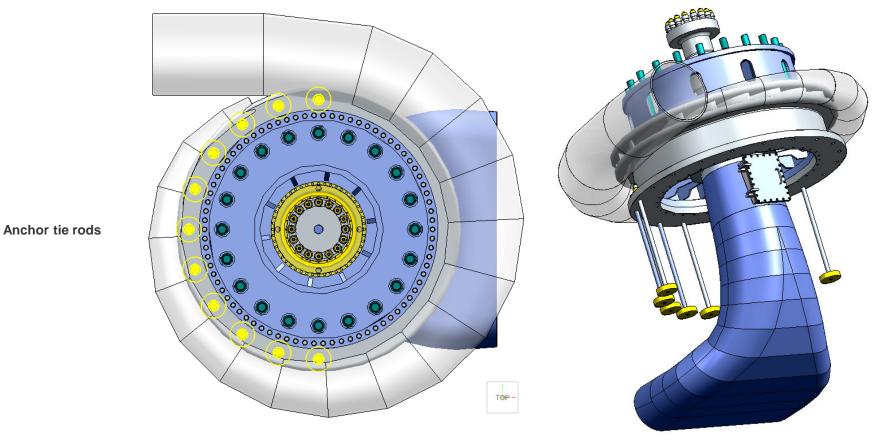
- Smooth machine start by individual opening of wicket gates
- Better control of transient machine behavior
- Easier maintenance (shorter period) and access to turbine components

VOITH

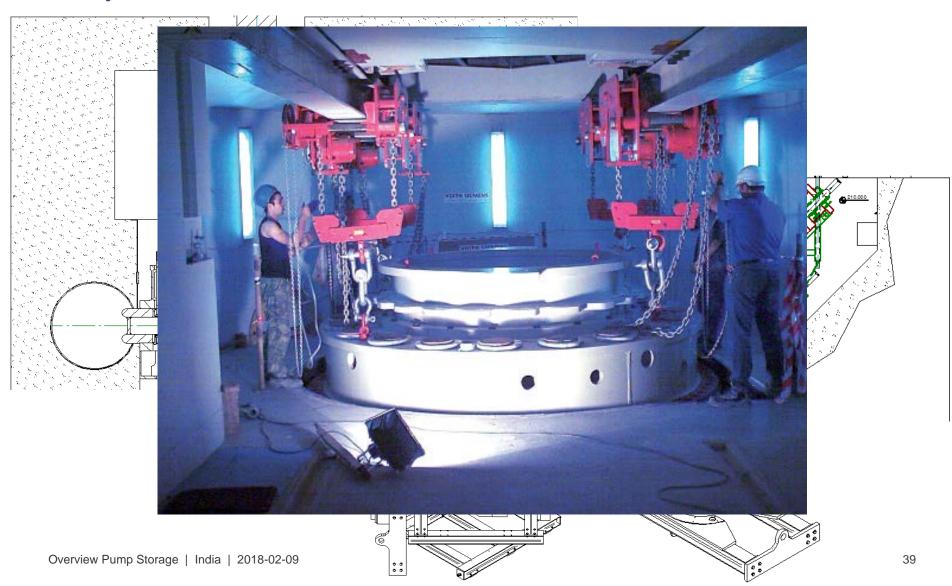

PSP Features


- Hydraulic Torque Tonverter
- "Start Up" Pump Mode
- Black Start Back to Back
- Single Servo Motor Control
- Runner Removal
- Variable Speed

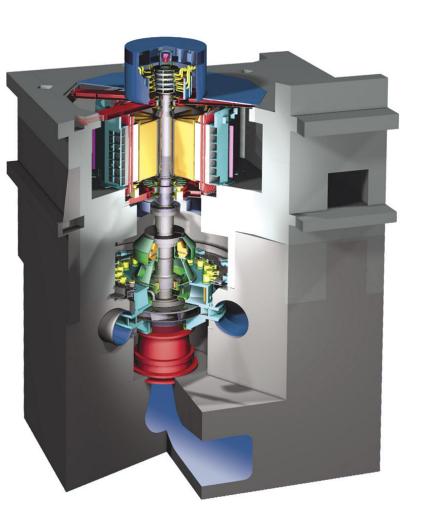
Power Unit Cross Section



VOITH


Project Details – Runner Removal

The runner removal by the draft tube access is not possible due to the interferance with anchor tie rods.

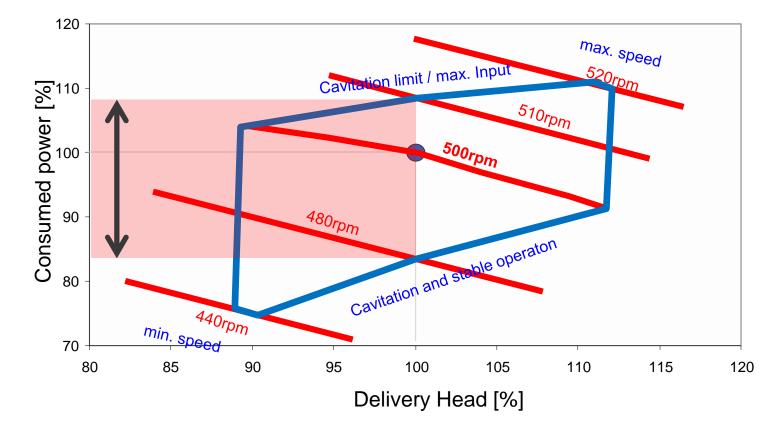


Project Details – Runner Removal

PSP Features

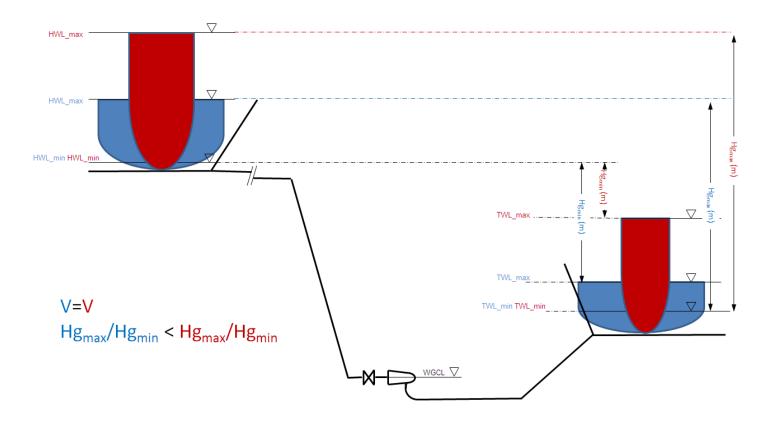
- Hydraulic Torque Converter
- "Start Up" Pump Mode
- Black Start Back to Back
- Single Servo Motor Control
- Runner Removal
- Variable Speed

VOITH

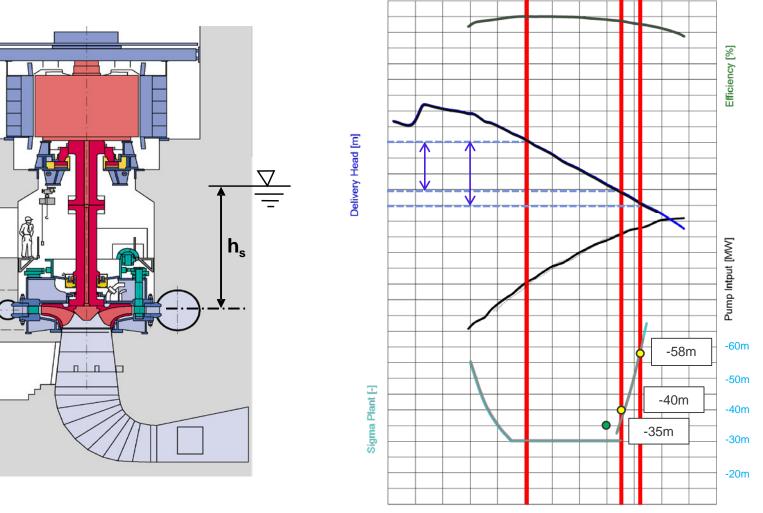


Motivation for variable - speed Applications

- Power Control in Pump Mode
- Large Head Variation of the Reservoirs
- Performance Optimization
- Extended Turbine Operating Range
- Features for grid stability

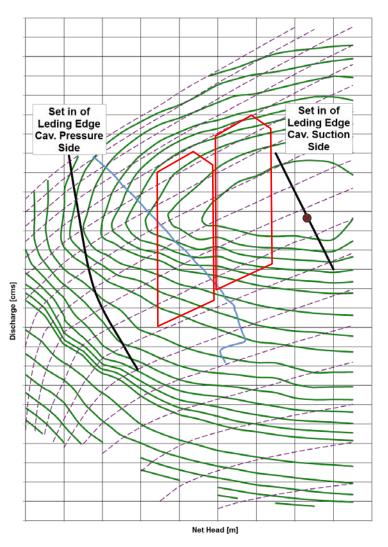


Motivation - Power Control in Pump Mode



pump input = f (runner diameter; hydr. geometry) \rightarrow fixed at the prototype pump input = f (head) \rightarrow can hardly be influenced at the prototype pump input = f (speed) \rightarrow can be changed by a nvar-M/G + BoP

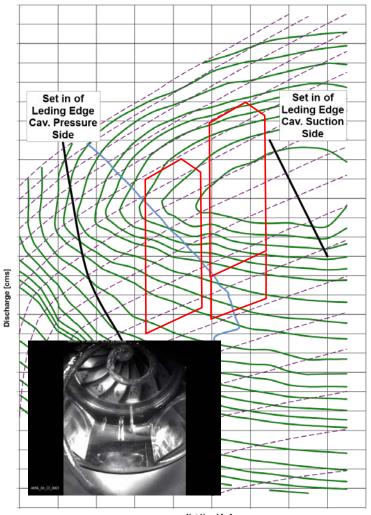
Motivation – Large Head Variation of the Reservoirs



Motivation – Large Head Variation of the Reservoirs

Motivation – Performance Optimization (Tu Mode)

- Runner diameter and speed are selected to have a stable pump mode operation
- Turbine mode operation will have therefore some constrains



Motivation – Extended Turbine Operating Range

Lower speed improves

- Pressure Pulsations
- Noise
- Vibration
- Efficiency at low part load

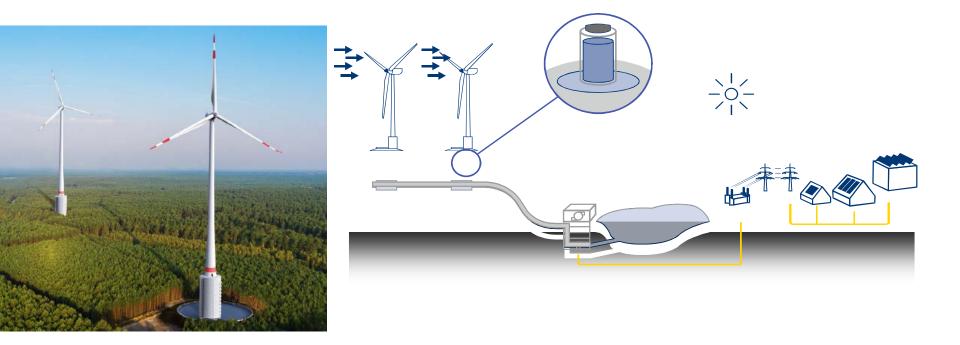
This effect can be used to decrease the lower operating limit.

Motivation – Features for Grid Stability

- Faster load ramping in pump and in turbine mode utilizing the AC excitation system for active & reactive power control. This applies also for offering important ancillary services to the grid such as primary and secondary frequency control reserves additionally in both modes.
- Potential to improve the grid stability in case of grid faults (e.g. LVRT – low voltage ride through, sustain longer in a 3 phase short circuit) by injecting fast active and reactive power in both modes (pump & turbine mode).

Line up of all Solutions

	Fix speed SM	DFIM - AC-Excitation	CFSM
MG Power	500 MVA (nearly no limitations)	500 MVA (limited by speed)	500 MVA (limited by speed)
Converter Power	6 % to 12 % (depending on machine size)	up to 30 % (of MG Power, depending on slip)	100 % (of MG Power)
Speed Range	Not applicable	+/- 10 % (typical)	+/- 20 % (typical)
Power Range MG	Not applicable	70 100 % (typical)	40 100 % (typical)
Power Factor Stator	0,9 (typical)	0,9 (typical)	0,9 (controlled to unity)
Power Factor Grid	0,9 (typical)	0,9 (typical)	0,9 (typical)
Generator Efficiency	synch. MG	less than synch. MG	synch. MG
Converter Efficiency	not applicable for normal operation	Approx. 96% - 98% of converter power incl. transformer (typical)	Approx. 96% - 98% of converter / MG power
Rotor Voltage / Current	acc. to best fit for MG / as needed	3,3 or 6,6 kV / up to 7,5 kA	acc. to best fit for MG as needed
Phase reversal switch	necessary	necessary	not necessary
Starting Time	medium	medium	short
Head Variation	no adaptation	medium	high
Costs MG	lower (approx. 100 %)	higher (approx. 130 %)	lower (approx. 100 %)
Costs converter system	low	high (approx. 5 times SFC - system costs)	higher (approx. 10 times SFC - system costs)
Availability	with converter or in case of two units BtB possible	operation only with converter	turb. operation w/o converter (bypass)
Blow Down	necessary	necessary	not necessary


VH References – Pump Storage

Year of Commissioning	Project	Details
1937	Pedreira, Brazil	First reversible pump turbine in the world with 5.3 MW unit output, 30 m, 212 rpm
1954	Luenersee, Austria	First pump with head exceeding 1000 m
2001	Bath County, USA	World's highest output pump turbine of unit power 480MW
2010	Frades II, Portugal	372 MW pump turbine, Europe's most powerful variable speed motor generator with speed range from 350 rpm to 381 rpm
2011	Hongrin Leman,Switzerland	5 stage radial pumps, P :118 MW, H : 865 m
2017	Chan Long Shan, China	357 MW pump turbine, H : from 690 m to 760 m

Innovative, scalable small size pumped storage – Gaildorf, Germany

Gaildorf – Combination of Wind and Water

Wind Turbine Capacity	4 x 3.4 MW	Pump Storage Capacity (speed variable; hydraulic circuit operation)	3 x 5.3 MW
Rotor Diameter	137m	Runner Diameter	1.150m
Wind Power (~ 6.2 m/s)	42 GWh	Storage Capacity	70 MWh
Installation Height (Hub)	155 – 157m	Net Head	200m

Source: Brochure Naturstrom EN, Naturstromspeicher GmBH

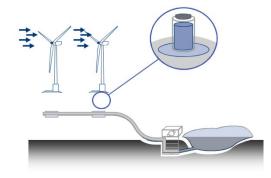
Overview Pump Storage | India | 2018-02-09

ATURSTROMSPEICHER

Fortschritt baut man aus Ideer

Advantages for on-site integration of PSP with wind farm in Gaildorf (I)

- CO₂ emissions are zero during operation since generation with wind & storage in pumped mode & generation in turbine mode are CO₂-free
- Complete coverage of the electrical energy consumption of the city of Gaildorf with 12,000 inhabitants
- Savings of approximately 10,000 tons of black coal or 25,000 tons of lignite coal & corresponding CO₂ emissions
- Standardized pumped storage power plants (16/24/32 MW)
- Several project synergies PSP with a wind farm: substation, access roads, planning, land use, project & operation management, project volume, ...


ATURSTROMSPEICHER

Advantages for on-site integration of PSP with wind farm in Gaildorf (II)

Fortschritt baut man aus Ideer

- In Germany a fast & easy approval process for windfarms is in place, otherwise very massive public interventions due to the artificial upper reservoir
- Integration of the upper reservoir in the towers of the wind turbines reduces the interference in the natural areas significantly
- Short project implementation (3-5 years versus 10-15 years for large pumped storage power plants)
- Easily bankable power plant solution
- Smoothening effects of the wind volatility regarding over-all power output

Summary

- Todays pump storage power plant concepts are reversible pump turbines or ternary units (Pu+Tu)
- Input regulation during pump mode requires speed variable units or the possibitly to operate in hydraulic circuit
- Speed variable units are equipped with synchronous motorgenerator with a full power convertor between grid and stator or double feed induction machine with AC-excitation for the rotor
- Operating scheme including grid services of a modern pump storage plant must be well known to consider the necessary features at the E/M equipment, BoP and civil works

VOITH Inspiring Technology for Generations

Contact:

Sanjai Dhar Dwivedi Assistant Vice President – Turbine and Valve Engg

Tel. +91 120 30 74 242

Mobile +91 9910097647 sanjaidhar.dwivedi@voith.com

